Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 110 packages in 0.01 seconds

CohensdpLibrary — by Denis Cousineau, a year ago

Cohen's D_p Computation with Confidence Intervals

Computing Cohen's d_p in any experimental designs (between-subject, within-subject, and single-group design). Cousineau (2022) < https://github.com/dcousin3/CohensdpLibrary>; Cohen (1969, ISBN: 0-8058-0283-5).

crew — by William Michael Landau, 4 months ago

A Distributed Worker Launcher Framework

In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The 'NNG'-powered 'mirai' R package by Gao (2023) is a sleek and sophisticated scheduler that efficiently processes these intense workloads. The 'crew' package extends 'mirai' with a unifying interface for third-party worker launchers. Inspiration also comes from packages. 'future' by Bengtsson (2021) , 'rrq' by FitzJohn and Ashton (2023) < https://github.com/mrc-ide/rrq>, 'clustermq' by Schubert (2019) ), and 'batchtools' by Lang, Bischel, and Surmann (2017) .

activPAL — by Craig Speirs, 4 months ago

Advanced Processing and Chart Generation from activPAL Events Files

Contains functions to generate pre-defined summary statistics from activPAL events files < https://www.palt.com/>. The package also contains functions to produce informative graphics that visualise physical activity behaviour and trends. This includes generating graphs that align physical activity behaviour with additional time based observations described by other data sets, such as sleep diaries and continuous glucose monitoring data.

Rlab — by Dennis Boos, 4 years ago

Functions and Datasets Required for ST370 Class

Provides functions and datasets required for the ST 370 course at North Carolina State University.

ppwdeming — by Jessica J. Kraker, 14 days ago

Precision Profile Weighted Deming Regression

Weighted Deming regression, also known as 'errors-in-variable' regression, is applied with suitable weights. Weights are modeled via a precision profile; thus the methods implemented here are referred to as precision profile weighted Deming (PWD) regression. The package covers two settings – one where the precision profiles are known either from external studies or from adequate replication of the X and Y readings, and one in which there is a plausible functional form for the precision profiles but the exact (unknown) function must be estimated from the (generally singlicate) readings. The function set includes tools for: estimated standard errors (via jackknifing); standardized-residual analysis function with regression diagnostic tools for normality, linearity and constant variance; and an outlier analysis identifying significant outliers for closer investigation. The following reference provides further information on mathematical derivations and applications. Hawkins, D.M., and J.J. Kraker. 'Precision Profile Weighted Deming Regression for Methods Comparison', (in press) .

DEGRE — by Douglas Terra Machado, 3 years ago

Inferring Differentially Expressed Genes using Generalized Linear Mixed Models

Genes that are differentially expressed between two or more experimental conditions can be detected in RNA-Seq. A high biological variability may impact the discovery of these genes once it may be divergent between the fixed effects. However, this variability can be covered by the random effects. 'DEGRE' was designed to identify the differentially expressed genes considering fixed and random effects on individuals. These effects are identified earlier in the experimental design matrix. 'DEGRE' has the implementation of preprocessing procedures to clean the near zero gene reads in the count matrix, normalize by 'RLE' published in the 'DESeq2' package, 'Love et al. (2014)' and it fits a regression for each gene using the Generalized Linear Mixed Model with the negative binomial distribution, followed by a Wald test to assess the regression coefficients.

POFIBGE — by Gabriel Assuncao, 4 years ago

Downloading, Reading and Analyzing POF Microdata - Package in Development

Provides tools for downloading, reading and analyzing the POF, a household survey from Brazilian Institute of Geography and Statistics - IBGE. The data must be downloaded from the official website < https://www.ibge.gov.br/>. Further analysis must be made using package 'survey'.

robustGarch — by Echo Liu, 9 months ago

Robust Garch(1,1) Model

A method for modeling robust generalized autoregressive conditional heteroskedasticity (Garch) (1,1) processes, providing robustness toward additive outliers instead of innovation outliers. This work is based on the methodology described by Muler and Yohai (2008) .

RespirAnalyzer — by Xinzheng Dong, 3 years ago

Analysis Functions of Respiratory Data

Provides functions for the complete analysis of respiratory data. Consists of a set of functions that allow to preprocessing respiratory data, calculate both regular statistics and nonlinear statistics, conduct group comparison and visualize the results. Especially, Power Spectral Density ('PSD') (A. Eke (2000) ), 'MultiScale Entropy(MSE)' ('Madalena Costa(2002)' ) and 'MultiFractal Detrended Fluctuation Analysis(MFDFA)' ('Jan W.Kantelhardt' (2002) ) were applied for the analysis of respiratory data.

orderly — by Rich FitzJohn, 3 months ago

Lightweight Reproducible Reporting

Distributed reproducible computing framework, adopting ideas from git, docker and other software. By defining a lightweight interface around the inputs and outputs of an analysis, a lot of the repetitive work for reproducible research can be automated. We define a simple format for organising and describing work that facilitates collaborative reproducible research and acknowledges that all analyses are run multiple times over their lifespans.