Found 10000 packages in 0.01 seconds
Advanced and Fast Data Transformation
A large C/C++-based package for advanced data transformation and statistical computing in R that is extremely fast, class-agnostic, robust, and programmer friendly. Core functionality includes a rich set of S3 generic grouped and weighted statistical functions for vectors, matrices and data frames, which provide efficient low-level vectorizations, OpenMP multithreading, and skip missing values by default. These are integrated with fast grouping and ordering algorithms (also callable from C), and efficient data manipulation functions. The package also provides a flexible and rigorous approach to time series and panel data in R, fast functions for data transformation and common statistical procedures, detailed (grouped, weighted) summary statistics, powerful tools to work with nested data, fast data object conversions, functions for memory efficient R programming, and helpers to effectively deal with variable labels, attributes, and missing data. It seamlessly supports base R objects/classes as well as 'units', 'integer64', 'xts'/ 'zoo', 'tibble', 'grouped_df', 'data.table', 'sf', and 'pseries'/'pdata.frame'.
Data Structures, Summaries, and Visualisations for Missing Data
Missing values are ubiquitous in data and need to be explored and
handled in the initial stages of analysis. 'naniar' provides data
structures and functions that facilitate the plotting of missing values and
examination of imputations. This allows missing data dependencies to be
explored with minimal deviation from the common work patterns of 'ggplot2'
and tidy data. The work is fully discussed at Tierney & Cook (2023)
Automatically Position Non-Overlapping Text Labels with 'ggplot2'
Provides text and label geoms for 'ggplot2' that help to avoid overlapping text labels. Labels repel away from each other and away from the data points.
Official R API for Fetching Data from 'EODHD'
Second and backward-incompatible version of R package 'eodhd' < https://eodhd.com/>, extended with a cache and quota system, also offering functions for cleaning and aggregating the financial data.
Standard Dataset Manager for Observational Medical Outcomes Partnership Common Data Model Sample Datasets
Facilitates access to sample datasets from the 'EunomiaDatasets' repository (< https://github.com/ohdsi/EunomiaDatasets>).
Help to Fit of a Parametric Distribution to Non-Censored or Censored Data
Extends the fitdistr() function (of the MASS package) with several functions to help the fit of a parametric distribution to non-censored or censored data. Censored data may contain left censored, right censored and interval censored values, with several lower and upper bounds. In addition to maximum likelihood estimation (MLE), the package provides moment matching (MME), quantile matching (QME), maximum goodness-of-fit estimation (MGE) and maximum spacing estimation (MSE) methods (available only for non-censored data). Weighted versions of MLE, MME, QME and MSE are available. See e.g. Casella & Berger (2002), Statistical inference, Pacific Grove, for a general introduction to parametric estimation.
Interactive Data Tables for R
Interactive data tables for R, based on the 'React Table' JavaScript library. Provides an HTML widget that can be used in 'R Markdown' or 'Quarto' documents, 'Shiny' applications, or viewed from an R console.
Tidy Temporal Data Frames and Tools
Provides a 'tbl_ts' class (the 'tsibble') for temporal data in an data- and model-oriented format. The 'tsibble' provides tools to easily manipulate and analyse temporal data, such as filling in time gaps and aggregating over calendar periods.
Manipulating Labelled Data
Work with labelled data imported from 'SPSS' or 'Stata' with 'haven' or 'foreign'. This package provides useful functions to deal with "haven_labelled" and "haven_labelled_spss" classes introduced by 'haven' package.
Extract and Visualize the Results of Multivariate Data Analyses
Provides some easy-to-use functions to extract and visualize the output of multivariate data analyses, including 'PCA' (Principal Component Analysis), 'CA' (Correspondence Analysis), 'MCA' (Multiple Correspondence Analysis), 'FAMD' (Factor Analysis of Mixed Data), 'MFA' (Multiple Factor Analysis) and 'HMFA' (Hierarchical Multiple Factor Analysis) functions from different R packages. It contains also functions for simplifying some clustering analysis steps and provides 'ggplot2' - based elegant data visualization.