Found 2887 packages in 0.01 seconds
Conformal Time Series Forecasting Using State of Art Machine Learning Algorithms
Conformal time series forecasting using the caret infrastructure. It provides access to state-of-the-art machine learning models for forecasting applications. The hyperparameter of each model is selected based on time series cross-validation, and forecasting is done recursively.
Forecasting Time Series by Theta Models
Routines for forecasting univariate time series using Theta Models.
Maximum Entropy Bootstrap for Time Series
Maximum entropy density based dependent data bootstrap.
An algorithm is provided to create a population of time series (ensemble)
without assuming stationarity. The reference paper (Vinod, H.D., 2004
Multivariate Time Series Data Imputation
This is an EM algorithm based method for imputation of missing values in multivariate normal time series. The imputation algorithm accounts for both spatial and temporal correlation structures. Temporal patterns can be modeled using an ARIMA(p,d,q), optionally with seasonal components, a non-parametric cubic spline or generalized additive models with exogenous covariates. This algorithm is specially tailored for climate data with missing measurements from several monitors along a given region.
Methods for Temporal Disaggregation and Interpolation of Time Series
Temporal disaggregation methods are used to disaggregate and
interpolate a low frequency time series to a higher frequency series, where
either the sum, the mean, the first or the last value of the resulting
high frequency series is consistent with the low frequency series. Temporal
disaggregation can be performed with or without one or more high frequency
indicator series. Contains the methods of Chow-Lin, Santos-Silva-Cardoso,
Fernandez, Litterman, Denton and Denton-Cholette, summarized in Sax and
Steiner (2013)
Deep Learning Model for Time Series Forecasting
RNNs are preferred for sequential data like time series, speech, text, etc. but when dealing with long range dependencies, vanishing gradient problems account for their poor performance. LSTM and GRU are effective solutions which are nothing but RNN networks with the abilities of learning both short-term and long-term dependencies. Their structural makeup enables them to remember information for a long period without any difficulty. LSTM consists of one cell state and three gates, namely, forget gate, input gate and output gate whereas GRU comprises only two gates, namely, reset gate and update gate. This package consists of three different functions for the application of RNN, LSTM and GRU to any time series data for its forecasting. For method details see Jaiswal, R. et al. (2022).
Time Series Management and Analysis for Hydrological Modelling
S3 functions for management, analysis, interpolation and plotting of time series used in hydrology and related environmental sciences. In particular, this package is highly oriented to hydrological modelling tasks. The focus of this package has been put in providing a collection of tools useful for the daily work of hydrologists (although an effort was made to optimise each function as much as possible, functionality has had priority over speed). Bugs / comments / questions / collaboration of any kind are very welcomed, and in particular, datasets that can be included in this package for academic purposes.
Dimension Reduction Methods for Multivariate Time Series
Estimates VAR and VARX models with Structured Penalties using the methods developed by Nicholson et al (2017)
Rmetrics - Autoregressive Conditional Heteroskedastic Modelling
Analyze and model heteroskedastic behavior in financial time series.
Time Value of Money, Time Series Analysis and Computational Finance
Package for time value of money calculation, time series analysis and computational finance.