Found 2460 packages in 0.02 seconds
Covariance Inference and Decompositions for Tensor Datasets
A collection of functions for Kronecker structured covariance
estimation and testing under the array normal model. For estimation,
maximum likelihood and Bayesian equivariant estimation procedures are
implemented. For testing, a likelihood ratio testing procedure is
available. This package also contains additional functions for manipulating
and decomposing tensor data sets. This work was partially supported by NSF
grant DMS-1505136. Details of the methods are described in
Gerard and Hoff (2015)
Vector Generalized Linear and Additive Models
An implementation of about 6 major classes of
statistical regression models. The central algorithm is
Fisher scoring and iterative reweighted least squares.
At the heart of this package are the vector generalized linear
and additive model (VGLM/VGAM) classes. VGLMs can be loosely
thought of as multivariate GLMs. VGAMs are data-driven
VGLMs that use smoothing. The book "Vector Generalized
Linear and Additive Models: With an Implementation in R"
(Yee, 2015)
A Simple and Robust JSON Parser and Generator for R
A reasonably fast JSON parser and generator, optimized for statistical data and the web. Offers simple, flexible tools for working with JSON in R, and is particularly powerful for building pipelines and interacting with a web API. The implementation is based on the mapping described in the vignette (Ooms, 2014). In addition to converting JSON data from/to R objects, 'jsonlite' contains functions to stream, validate, and prettify JSON data. The unit tests included with the package verify that all edge cases are encoded and decoded consistently for use with dynamic data in systems and applications.
Bayesian Models for Dissolution Testing
Fits Bayesian models (amongst others) to dissolution data sets that can be used for dissolution testing. The package was originally constructed to include only the Bayesian models outlined in Pourmohamad et al. (2022)
Tools for Spell Checking in R
Spell checking common document formats including latex, markdown, manual pages, and description files. Includes utilities to automate checking of documentation and vignettes as a unit test during 'R CMD check'. Both British and American English are supported out of the box and other languages can be added. In addition, packages may define a 'wordlist' to allow custom terminology without having to abuse punctuation.
Generalized Additive Mixed Model Analysis via Slice Sampling
Uses a slice sampling-based Markov chain Monte Carlo to
conduct Bayesian fitting and inference for generalized additive
mixed models. Generalized linear mixed models and generalized
additive models are also handled as special cases of generalized
additive mixed models. The methodology and software is described
in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand
Journal of Statistics, 60, 279-330
Generalized Additive Models
Functions for fitting and working with generalized additive models, as described in chapter 7 of "Statistical Models in S" (Chambers and Hastie (eds), 1991), and "Generalized Additive Models" (Hastie and Tibshirani, 1990).
Isotopic Tracer Analysis Using MCMC
Implements Bayesian models to analyze data from tracer addition
experiments. The implemented method was originally described in the article
"A New Method to Reconstruct Quantitative Food Webs and Nutrient Flows from
Isotope Tracer Addition Experiments" by López-Sepulcre et al. (2020)
Bayesian Methods for Identifying the Most Harmful Medication Errors
Two distinct but related statistical approaches to the problem of identifying the combinations of medication error characteristics that are more likely to result in harm are implemented in this package: 1) a Bayesian hierarchical model with optimal Bayesian ranking on the log odds of harm, and 2) an empirical Bayes model that estimates the ratio of the observed count of harm to the count that would be expected if error characteristics and harm were independent. In addition, for the Bayesian hierarchical model, the package provides functions to assess the sensitivity of results to different specifications of the random effects distributions.
Machine Learning Experiments
Provides 'R6' objects to perform parallelized hyperparameter optimization and cross-validation. Hyperparameter optimization can be performed with Bayesian optimization (via 'ParBayesianOptimization' < https://cran.r-project.org/package=ParBayesianOptimization>) and grid search. The optimized hyperparameters can be validated using k-fold cross-validation. Alternatively, hyperparameter optimization and validation can be performed with nested cross-validation. While 'mlexperiments' focuses on core wrappers for machine learning experiments, additional learner algorithms can be supplemented by inheriting from the provided learner base class.