Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2547 packages in 0.01 seconds

bartMan — by Alan Inglis, 8 months ago

Create Visualisations for BART Models

Investigating and visualising Bayesian Additive Regression Tree (BART) (Chipman, H. A., George, E. I., & McCulloch, R. E. 2010) model fits. We construct conventional plots to analyze a model’s performance and stability as well as create new tree-based plots to analyze variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using colour scale to represent posterior uncertainty. Our visualisations are designed to work with the most popular BART R packages available, namely 'BART' Rodney Sparapani and Charles Spanbauer and Robert McCulloch 2021 , 'dbarts' (Vincent Dorie 2023) < https://CRAN.R-project.org/package=dbarts>, and 'bartMachine' (Adam Kapelner and Justin Bleich 2016) .

tensr — by David Gerard, 7 years ago

Covariance Inference and Decompositions for Tensor Datasets

A collection of functions for Kronecker structured covariance estimation and testing under the array normal model. For estimation, maximum likelihood and Bayesian equivariant estimation procedures are implemented. For testing, a likelihood ratio testing procedure is available. This package also contains additional functions for manipulating and decomposing tensor data sets. This work was partially supported by NSF grant DMS-1505136. Details of the methods are described in Gerard and Hoff (2015) and Gerard and Hoff (2016) .

BayesDissolution — by Tony Pourmohamad, a year ago

Bayesian Models for Dissolution Testing

Fits Bayesian models (amongst others) to dissolution data sets that can be used for dissolution testing. The package was originally constructed to include only the Bayesian models outlined in Pourmohamad et al. (2022) . However, additional Bayesian and non-Bayesian models (based on bootstrapping and generalized pivotal quanties) have also been added. More models may be added over time.

spelling — by Jeroen Ooms, 6 months ago

Tools for Spell Checking in R

Spell checking common document formats including latex, markdown, manual pages, and description files. Includes utilities to automate checking of documentation and vignettes as a unit test during 'R CMD check'. Both British and American English are supported out of the box and other languages can be added. In addition, packages may define a 'wordlist' to allow custom terminology without having to abuse punctuation.

gam — by Trevor Hastie, 7 months ago

Generalized Additive Models

Functions for fitting and working with generalized additive models, as described in chapter 7 of "Statistical Models in S" (Chambers and Hastie (eds), 1991), and "Generalized Additive Models" (Hastie and Tibshirani, 1990).

gammSlice — by Matt P. Wand, 6 years ago

Generalized Additive Mixed Model Analysis via Slice Sampling

Uses a slice sampling-based Markov chain Monte Carlo to conduct Bayesian fitting and inference for generalized additive mixed models. Generalized linear mixed models and generalized additive models are also handled as special cases of generalized additive mixed models. The methodology and software is described in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand Journal of Statistics, 60, 279-330 .

isotracer — by Matthieu Bruneaux, a month ago

Isotopic Tracer Analysis Using MCMC

Implements Bayesian models to analyze data from tracer addition experiments. The implemented method was originally described in the article "A New Method to Reconstruct Quantitative Food Webs and Nutrient Flows from Isotope Tracer Addition Experiments" by López-Sepulcre et al. (2020) .

mederrRank — by Sergio Venturini, 2 years ago

Bayesian Methods for Identifying the Most Harmful Medication Errors

Two distinct but related statistical approaches to the problem of identifying the combinations of medication error characteristics that are more likely to result in harm are implemented in this package: 1) a Bayesian hierarchical model with optimal Bayesian ranking on the log odds of harm, and 2) an empirical Bayes model that estimates the ratio of the observed count of harm to the count that would be expected if error characteristics and harm were independent. In addition, for the Bayesian hierarchical model, the package provides functions to assess the sensitivity of results to different specifications of the random effects distributions.

BayesXsrc — by Nikolaus Umlauf, 23 days ago

Distribution of the 'BayesX' C++ Sources

'BayesX' performs Bayesian inference in structured additive regression (STAR) models. The R package BayesXsrc provides the 'BayesX' command line tool for easy installation. A convenient R interface is provided in package R2BayesX.

bhmbasket — by Stephan Wojciekowski, 3 years ago

Bayesian Hierarchical Models for Basket Trials

Provides functions for the evaluation of basket trial designs with binary endpoints. Operating characteristics of a basket trial design are assessed by simulating trial data according to scenarios, analyzing the data with Bayesian hierarchical models (BHMs), and assessing decision probabilities on stratum and trial-level based on Go / No-go decision making. The package is build for high flexibility regarding decision rules, number of interim analyses, number of strata, and recruitment. The BHMs proposed by Berry et al. (2013) and Neuenschwander et al. (2016) , as well as a model that combines both approaches are implemented. Functions are provided to implement Bayesian decision rules as for example proposed by Fisch et al. (2015) . In addition, posterior point estimates (mean/median) and credible intervals for response rates and some model parameters can be calculated. For simulated trial data, bias and mean squared errors of posterior point estimates for response rates can be provided.