Found 454 packages in 0.01 seconds
Meta-Analysis of Generalized Additive Models
Meta-analysis of generalized additive
models and generalized additive mixed models. A typical use case is
when data cannot be shared across locations, and an overall meta-analytic
fit is sought. 'metagam' provides functionality for removing individual
participant data from models computed using the 'mgcv' and 'gamm4' packages such
that the model objects can be shared without exposing individual data.
Furthermore, methods for meta-analysing these fits are provided. The implemented
methods are described in Sorensen et al. (2020),
Transformation Models with Mixed Effects
Likelihood-based estimation of mixed-effects transformation models
using the Template Model Builder ('TMB', Kristensen et al., 2016)
Generalized Additive Models with Flexible Response Functions
Standard generalized additive models assume a response function,
which induces an assumption on the shape of the distribution of the
response. However, miss-specifying the response function results in biased
estimates. Therefore in Spiegel et al. (2017)
Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models
The 'DHARMa' package uses a simulation-based approach to create readily interpretable scaled (quantile) residuals for fitted (generalized) linear mixed models. Currently supported are linear and generalized linear (mixed) models from 'lme4' (classes 'lmerMod', 'glmerMod'), 'glmmTMB', 'GLMMadaptive', and 'spaMM'; phylogenetic linear models from 'phylolm' (classes 'phylolm' and 'phyloglm'); generalized additive models ('gam' from 'mgcv'); 'glm' (including 'negbin' from 'MASS', but excluding quasi-distributions) and 'lm' model classes. Moreover, externally created simulations, e.g. posterior predictive simulations from Bayesian software such as 'JAGS', 'STAN', or 'BUGS' can be processed as well. The resulting residuals are standardized to values between 0 and 1 and can be interpreted as intuitively as residuals from a linear regression. The package also provides a number of plot and test functions for typical model misspecification problems, such as over/underdispersion, zero-inflation, and residual spatial, phylogenetic and temporal autocorrelation.
Easy Graphs for Data Visualisation and Linear Models for ANOVA
Easily explore data by plotting graphs with a few lines of code. Use these ggplot() wrappers to quickly draw graphs of scatter/dots with box-whiskers, violins or SD error bars, data distributions, before-after graphs, factorial ANOVA and more. Customise graphs in many ways, for example, by choosing from colour blind-friendly palettes (12 discreet, 3 continuous and 2 divergent palettes). Use the simple code for ANOVA as ordinary (lm()) or mixed-effects linear models (lmer()), including randomised-block or repeated-measures designs, and fit non-linear outcomes as a generalised additive model (gam) using mgcv(). Obtain estimated marginal means and perform post-hoc comparisons on fitted models (via emmeans()). Also includes small datasets for practising code and teaching basics before users move on to more complex designs. See vignettes for details on usage < https://grafify-vignettes.netlify.app/>. Citation:
Smooth Survival Models, Including Generalized Survival Models
R implementation of generalized survival models (GSMs), smooth accelerated failure time (AFT) models and Markov multi-state models. For the GSMs, g(S(t|x))=eta(t,x) for a link function g, survival S at time t with covariates x and a linear predictor eta(t,x). The main assumption is that the time effect(s) are smooth
Spatial and Spatiotemporal SPDE-Based GLMMs with 'TMB'
Implements spatial and spatiotemporal GLMMs (Generalized Linear
Mixed Effect Models) using 'TMB', 'fmesher', and the SPDE (Stochastic Partial
Differential Equation) Gaussian Markov random field approximation to
Gaussian random fields. One common application is for spatially explicit
species distribution models (SDMs).
See Anderson et al. (2024)
Community Ecology Package
Ordination methods, diversity analysis and other functions for community and vegetation ecologists.
Extra Graphical Utilities Based on Lattice
Building on the infrastructure provided by the lattice package, this package provides several new high-level functions and methods, as well as additional utilities such as panel and axis annotation functions.
Vector Generalized Linear and Additive Models
An implementation of about 6 major classes of
statistical regression models. The central algorithm is
Fisher scoring and iterative reweighted least squares.
At the heart of this package are the vector generalized linear
and additive model (VGLM/VGAM) classes. VGLMs can be loosely
thought of as multivariate GLMs. VGAMs are data-driven
VGLMs that use smoothing. The book "Vector Generalized
Linear and Additive Models: With an Implementation in R"
(Yee, 2015)