Found 2760 packages in 0.08 seconds
Modelling Multivariate Data with Additive Bayesian Networks
The 'abn' R package facilitates Bayesian network analysis, a probabilistic graphical model that derives from empirical data a directed acyclic graph (DAG). This DAG describes the dependency structure between random variables. The R package 'abn' provides routines to help determine optimal Bayesian network models for a given data set. These models are used to identify statistical dependencies in messy, complex data. Their additive formulation is equivalent to multivariate generalised linear modelling, including mixed models with independent and identically distributed (iid) random effects. The core functionality of the 'abn' package revolves around model selection, also known as structure discovery. It supports both exact and heuristic structure learning algorithms and does not restrict the data distribution of parent-child combinations, providing flexibility in model creation and analysis. The 'abn' package uses Laplace approximations for metric estimation and includes wrappers to the 'INLA' package. It also employs 'JAGS' for data simulation purposes. For more resources and information, visit the 'abn' website.
Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model
Performs Bayesian estimation of the additive main effects and multiplicative interaction (AMMI) model. The method is explained in Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G. and Cornelius, P.L. (2011) (
Tidy Data and 'Geoms' for Bayesian Models
Compose data for and extract, manipulate, and visualize posterior draws from Bayesian models ('JAGS', 'Stan', 'rstanarm', 'brms', 'MCMCglmm', 'coda', ...) in a tidy data format. Functions are provided to help extract tidy data frames of draws from Bayesian models and that generate point summaries and intervals in a tidy format. In addition, 'ggplot2' 'geoms' and 'stats' are provided for common visualization primitives like points with multiple uncertainty intervals, eye plots (intervals plus densities), and fit curves with multiple, arbitrary uncertainty bands.
Bayesian Mixture Survival Models using Additive Mixture-of-Weibull Hazards, with Lasso Shrinkage and Stratification
Bayesian Mixture Survival Models using Additive Mixture-of-Weibull Hazards, with Lasso Shrinkage and Stratification. As a Bayesian dynamic survival model, it relaxes the proportional-hazard assumption. Lasso shrinkage controls overfitting, given the increase in the number of free parameters in the model due to presence of two Weibull components in the hazard function.
Bayesian Mediation Analysis Using BART
Used for Bayesian mediation analysis based on Bayesian additive Regression Trees (BART). The analysis method is described in Yu and Li (2025) "Mediation Analysis with Bayesian Additive Regression Trees", submitted for publication.
Generalized Multivariate Functional Additive Models
Supply implementation to model generalized multivariate functional
data using Bayesian additive mixed models of R package 'bamlss' via a latent
Gaussian process (see Umlauf, Klein, Zeileis (2018)
Extensible Package for Parallel, Batch Training of Base Learners for Ensemble Modeling
Extensible S4 classes and methods for batch training of regression and classification algorithms such as Random Forest, Gradient Boosting Machine, Neural Network, Support Vector Machines, K-Nearest Neighbors, Penalized Regression (L1/L2), and Bayesian Additive Regression Trees. These algorithms constitute a set of 'base learners', which can subsequently be combined together to form ensemble predictions. This package provides cross-validation wrappers to allow for downstream application of ensemble integration techniques, including best-error selection. All base learner estimation objects are retained, allowing for repeated prediction calls without the need for re-training. For large problems, an option is provided to save estimation objects to disk, along with prediction methods that utilize these objects. This allows users to train and predict with large ensembles of base learners without being constrained by system RAM.
Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models
The 'DHARMa' package uses a simulation-based approach to create readily interpretable scaled (quantile) residuals for fitted (generalized) linear mixed models. Currently supported are linear and generalized linear (mixed) models from 'lme4' (classes 'lmerMod', 'glmerMod'), 'glmmTMB', 'GLMMadaptive', and 'spaMM'; phylogenetic linear models from 'phylolm' (classes 'phylolm' and 'phyloglm'); generalized additive models ('gam' from 'mgcv'); 'glm' (including 'negbin' from 'MASS', but excluding quasi-distributions) and 'lm' model classes. Moreover, externally created simulations, e.g. posterior predictive simulations from Bayesian software such as 'JAGS', 'STAN', or 'BUGS' can be processed as well. The resulting residuals are standardized to values between 0 and 1 and can be interpreted as intuitively as residuals from a linear regression. The package also provides a number of plot and test functions for typical model misspecification problems, such as over/underdispersion, zero-inflation, and residual spatial, phylogenetic and temporal autocorrelation.
Record Linkage for Empirically Motivated Priors
An implementation of the model in Steorts (2015)
Stochastic Tree Ensembles (XBART and BART) for Supervised Learning and Causal Inference
Flexible stochastic tree ensemble software.
Robust implementations of Bayesian Additive Regression Trees (BART)
Chipman, George, McCulloch (2010)