Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 7459 packages in 0.04 seconds

lmerTest — by Rune Haubo Bojesen Christensen, 5 years ago

Tests in Linear Mixed Effects Models

Provides p-values in type I, II or III anova and summary tables for lmer model fits (cf. lme4) via Satterthwaite's degrees of freedom method. A Kenward-Roger method is also available via the pbkrtest package. Model selection methods include step, drop1 and anova-like tables for random effects (ranova). Methods for Least-Square means (LS-means) and tests of linear contrasts of fixed effects are also available.

GLMMadaptive — by Dimitris Rizopoulos, 4 months ago

Generalized Linear Mixed Models using Adaptive Gaussian Quadrature

Fits generalized linear mixed models for a single grouping factor under maximum likelihood approximating the integrals over the random effects with an adaptive Gaussian quadrature rule; Jose C. Pinheiro and Douglas M. Bates (1995) .

lqmm — by Marco Geraci, 3 years ago

Linear Quantile Mixed Models

Functions to fit quantile regression models for hierarchical data (2-level nested designs) as described in Geraci and Bottai (2014, Statistics and Computing) . A vignette is given in Geraci (2014, Journal of Statistical Software) and included in the package documents. The packages also provides functions to fit quantile models for independent data and for count responses.

LMMsolver — by Bart-Jan van Rossum, 2 months ago

Linear Mixed Model Solver

An efficient and flexible system to solve sparse mixed model equations. Important applications are the use of splines to model spatial or temporal trends as described in Boer (2023). ().

lcmm — by Cecile Proust-Lima, 5 months ago

Extended Mixed Models Using Latent Classes and Latent Processes

Estimation of various extensions of the mixed models including latent class mixed models, joint latent class mixed models, mixed models for curvilinear outcomes, mixed models for multivariate longitudinal outcomes using a maximum likelihood estimation method (Proust-Lima, Philipps, Liquet (2017) ).

gaston — by HervĂ© Perdry, 2 years ago

Genetic Data Handling (QC, GRM, LD, PCA) & Linear Mixed Models

Manipulation of genetic data (SNPs). Computation of GRM and dominance matrix, LD, heritability with efficient algorithms for linear mixed model (AIREML). Dandine et al .

pammtools — by Andreas Bender, 4 months ago

Piece-Wise Exponential Additive Mixed Modeling Tools for Survival Analysis

The Piece-wise exponential (Additive Mixed) Model (PAMM; Bender and others (2018) ) is a powerful model class for the analysis of survival (or time-to-event) data, based on Generalized Additive (Mixed) Models (GA(M)Ms). It offers intuitive specification and robust estimation of complex survival models with stratified baseline hazards, random effects, time-varying effects, time-dependent covariates and cumulative effects (Bender and others (2019)), as well as support for left-truncated data as well as competing risks, recurrent events and multi-state settings. pammtools provides tidy workflow for survival analysis with PAMMs, including data simulation, transformation and other functions for data preprocessing and model post-processing as well as visualization.

mixlm — by Kristian Hovde Liland, 6 months ago

Mixed Model ANOVA and Statistics for Education

The main functions perform mixed models analysis by least squares or REML by adding the function r() to formulas of lm() and glm(). A collection of text-book statistics for higher education is also included, e.g. modifications of the functions lm(), glm() and associated summaries from the package 'stats'.

coxme — by Terry M. Therneau, a year ago

Mixed Effects Cox Models

Fit Cox proportional hazards models containing both fixed and random effects. The random effects can have a general form, of which familial interactions (a "kinship" matrix) is a particular special case. Note that the simplest case of a mixed effects Cox model, i.e. a single random per-group intercept, is also called a "frailty" model. The approach is based on Ripatti and Palmgren, Biometrics 2002.

glmertree — by Marjolein Fokkema, 8 months ago

Generalized Linear Mixed Model Trees

Recursive partitioning based on (generalized) linear mixed models (GLMMs) combining lmer()/glmer() from 'lme4' and lmtree()/glmtree() from 'partykit'. The fitting algorithm is described in more detail in Fokkema, Smits, Zeileis, Hothorn & Kelderman (2018; ). For detecting and modeling subgroups in growth curves with GLMM trees see Fokkema & Zeileis (2024; ).