Found 969 packages in 0.14 seconds
C++ Header Files for Stan
The C++ header files of the Stan project are provided by this package, but it contains little R code or documentation. The main reference is the vignette. There is a shared object containing part of the 'CVODES' library, but its functionality is not accessible from R. 'StanHeaders' is primarily useful for developers who want to utilize the 'LinkingTo' directive of their package's DESCRIPTION file to build on the Stan library without incurring unnecessary dependencies. The Stan project develops a probabilistic programming language that implements full or approximate Bayesian statistical inference via Markov Chain Monte Carlo or 'variational' methods and implements (optionally penalized) maximum likelihood estimation via optimization. The Stan library includes an advanced automatic differentiation scheme, 'templated' statistical and linear algebra functions that can handle the automatically 'differentiable' scalar types (and doubles, 'ints', etc.), and a parser for the Stan language. The 'rstan' package provides user-facing R functions to parse, compile, test, estimate, and analyze Stan models.
Kernel-Based Machine Learning Lab
Kernel-based machine learning methods for classification, regression, clustering, novelty detection, quantile regression and dimensionality reduction. Among other methods 'kernlab' includes Support Vector Machines, Spectral Clustering, Kernel PCA, Gaussian Processes and a QP solver.
Non-Invasive Pretty Printing of R Code
Pretty-prints R code without changing the user's formatting intent.
Visualization of a Correlation Matrix
Provides a visual exploratory tool on correlation matrix that supports automatic variable reordering to help detect hidden patterns among variables.
Methods for Detection of Clusters in Hierarchical Clustering Dendrograms
Contains methods for detection of clusters in hierarchical clustering dendrograms.
Tools for Social Network Analysis
A range of tools for social network analysis, including node and graph-level indices, structural distance and covariance methods, structural equivalence detection, network regression, random graph generation, and 2D/3D network visualization.
Methods for Changepoint Detection
Implements various mainstream and specialised changepoint methods for finding single and multiple changepoints within data. Many popular non-parametric and frequentist methods are included. The cpt.mean(), cpt.var(), cpt.meanvar() functions should be your first point of call.
Fast Covariance Estimation for Sparse Functional Data
We implement the Fast Covariance Estimation for
Sparse Functional Data paper published in Statistics and Computing
Various R Programming Tools
Functions to assist in R programming, including: - assist in developing, updating, and maintaining R and R packages ('ask', 'checkRVersion', 'getDependencies', 'keywords', 'scat'), - calculate the logit and inverse logit transformations ('logit', 'inv.logit'), - test if a value is missing, empty or contains only NA and NULL values ('invalid'), - manipulate R's .Last function ('addLast'), - define macros ('defmacro'), - detect odd and even integers ('odd', 'even'), - convert strings containing non-ASCII characters (like single quotes) to plain ASCII ('ASCIIfy'), - perform a binary search ('binsearch'), - sort strings containing both numeric and character components ('mixedsort'), - create a factor variable from the quantiles of a continuous variable ('quantcut'), - enumerate permutations and combinations ('combinations', 'permutation'), - calculate and convert between fold-change and log-ratio ('foldchange', 'logratio2foldchange', 'foldchange2logratio'), - calculate probabilities and generate random numbers from Dirichlet distributions ('rdirichlet', 'ddirichlet'), - apply a function over adjacent subsets of a vector ('running'), - modify the TCP_NODELAY ('de-Nagle') flag for socket objects, - efficient 'rbind' of data frames, even if the column names don't match ('smartbind'), - generate significance stars from p-values ('stars.pval'), - convert characters to/from ASCII codes ('asc', 'chr'), - convert character vector to ASCII representation ('ASCIIfy'), - apply title capitalization rules to a character vector ('capwords').
Non-Parametric Trend Tests and Change-Point Detection
The analysis of environmental data often requires the detection of trends and change-points. This package includes tests for trend detection (Cox-Stuart Trend Test, Mann-Kendall Trend Test, (correlated) Hirsch-Slack Test, partial Mann-Kendall Trend Test, multivariate (multisite) Mann-Kendall Trend Test, (Seasonal) Sen's slope, partial Pearson and Spearman correlation trend test), change-point detection (Lanzante's test procedures, Pettitt's test, Buishand Range Test, Buishand U Test, Standard Normal Homogeinity Test), detection of non-randomness (Wallis-Moore Phase Frequency Test, Bartels rank von Neumann's ratio test, Wald-Wolfowitz Test) and the two sample Robust Rank-Order Distributional Test.