Found 7975 packages in 0.02 seconds
Spatial Data Analysis
Methods for spatial data analysis with vector (points, lines, polygons) and raster (grid) data. Methods for vector data include geometric operations such as intersect and buffer. Raster methods include local, focal, global, zonal and geometric operations. The predict and interpolate methods facilitate the use of regression type (interpolation, machine learning) models for spatial prediction, including with satellite remote sensing data. Processing of very large files is supported. See the manual and tutorials on < https://rspatial.org/> to get started. 'terra' replaces the 'raster' package ('terra' can do more, and it is faster and easier to use).
Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation
Gaussian finite mixture models fitted via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization, dimension reduction for visualisation, and resampling-based inference.
NASA POWER API Client
An API client for NASA POWER global meteorology, surface solar energy and climatology data API. POWER (Prediction Of Worldwide Energy Resources) data are freely available for download with varying spatial resolutions dependent on the original data and with several temporal resolutions depending on the POWER parameter and community. This work is funded through the NASA Earth Science Directorate Applied Science Program. For more on the data themselves, the methodologies used in creating, a web- based data viewer and web access, please see < https://power.larc.nasa.gov/>.
Linear Mixed-Effects Models using 'Eigen' and S4
Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".
Extended Model Formulas
Infrastructure for extended formulas with multiple parts on the
right-hand side and/or multiple responses on the left-hand side
(see
Extension of `data.frame`
Fast aggregation of large data (e.g. 100GB in RAM), fast ordered joins, fast add/modify/delete of columns by group using no copies at all, list columns, friendly and fast character-separated-value read/write. Offers a natural and flexible syntax, for faster development.
A Toolbox for Manipulating and Assessing Colors and Palettes
Carries out mapping between assorted color spaces including RGB, HSV, HLS,
CIEXYZ, CIELUV, HCL (polar CIELUV), CIELAB, and polar CIELAB.
Qualitative, sequential, and diverging color palettes based on HCL colors
are provided along with corresponding ggplot2 color scales.
Color palette choice is aided by an interactive app (with either a Tcl/Tk
or a shiny graphical user interface) and shiny apps with an HCL color picker and a
color vision deficiency emulator. Plotting functions for displaying
and assessing palettes include color swatches, visualizations of the
HCL space, and trajectories in HCL and/or RGB spectrum. Color manipulation
functions include: desaturation, lightening/darkening, mixing, and
simulation of color vision deficiencies (deutanomaly, protanomaly, tritanomaly).
Details can be found on the project web page at < https://colorspace.R-Forge.R-project.org/>
and in the accompanying scientific paper: Zeileis et al. (2020, Journal of Statistical
Software,
Trellis Graphics for R
A powerful and elegant high-level data visualization system inspired by Trellis graphics, with an emphasis on multivariate data. Lattice is sufficient for typical graphics needs, and is also flexible enough to handle most nonstandard requirements. See ?Lattice for an introduction.
Tools for Parsing and Generating XML Within R and S-Plus
Many approaches for both reading and creating XML (and HTML) documents (including DTDs), both local and accessible via HTTP or FTP. Also offers access to an 'XPath' "interpreter".
Simple Data Frames
Provides a 'tbl_df' class (the 'tibble') with stricter checking and better formatting than the traditional data frame.