Found 7996 packages in 0.01 seconds
Linear and Nonlinear Mixed Effects Models
Fit and compare Gaussian linear and nonlinear mixed-effects models.
MCMC Generalised Linear Mixed Models
Fits Multivariate Generalised Linear Mixed Models (and related models) using Markov chain Monte Carlo techniques (Hadfield 2010 J. Stat. Soft.).
Generalized Additive Mixed Models using 'mgcv' and 'lme4'
Estimate generalized additive mixed models via a version of function gamm() from 'mgcv', using 'lme4' for estimation.
Parametric Bootstrap, Kenward-Roger and Satterthwaite Based Methods for Test in Mixed Models
Computes p-values based on (a) Satterthwaite or
Kenward-Rogers degree of freedom methods and (b) parametric bootstrap
for mixed effects models as implemented in the 'lme4'
package. Implements parametric bootstrap test for generalized linear
mixed models as implemented in 'lme4' and generalized linear
models. The package is documented in the paper by Halekoh and
Højsgaard, (2012,
Linear Mixed-Effects Models using 'Eigen' and S4
Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".
Generalized Linear Mixed Models using Adaptive Gaussian Quadrature
Fits generalized linear mixed models for a single grouping factor under
maximum likelihood approximating the integrals over the random effects with an
adaptive Gaussian quadrature rule; Jose C. Pinheiro and Douglas M. Bates (1995)
Linear Quantile Mixed Models
Functions to fit quantile regression models for hierarchical
data (2-level nested designs) as described in Geraci and
Bottai (2014, Statistics and Computing)
Genetic Data Handling (QC, GRM, LD, PCA) & Linear Mixed Models
Manipulation of genetic data (SNPs). Computation of GRM and dominance matrix, LD, heritability with efficient algorithms for linear mixed model (AIREML). Dandine et al
Mixed Model ANOVA and Statistics for Education
The main functions perform mixed models analysis by least squares or REML by adding the function r() to formulas of lm() and glm(). A collection of text-book statistics for higher education is also included, e.g. modifications of the functions lm(), glm() and associated summaries from the package 'stats'.
Generalized Linear Mixed Model Trees
Recursive partitioning based on (generalized) linear mixed models
(GLMMs) combining lmer()/glmer() from 'lme4' and lmtree()/glmtree() from
'partykit'. The fitting algorithm is described in more detail in Fokkema,
Smits, Zeileis, Hothorn & Kelderman (2018;