Global Sensitivity Analysis in Physiologically Based Kinetic Modeling

Applying the global sensitivity analysis workflow to investigate the parameter uncertainty and sensitivity in pharmacokinetic (PK) models, especially the physiologically-based pharmacokinetic (PBPK) model with multivariate outputs. The package also provide some functions to check the sensitivity measures and its convergence of model parameters.


pksensi 1.1.0

Fix Bug:

  • Used single time point in solve_mcsim()

Update function:


  • Updated version = 6.1.0 in install_mcsim()
  • Adopt to file name in MCSim_under_R - "model.R.exe"


  • Change assignment n to monte_carlo in solve_mcsim()
  • Revise the default name of output to "sim.out" and "setpoint.out" in solve_mcsim()
  • Added solving message to track time spend in solve_mcsim()
  • Add assignment tell = T to automatically combine the output y in decoupling simulation x in solve_fun() and solve_mcsim()


  • Transfer the log-transformed value to natural scale in pksim()
  • Revise the discrete time condition to length(times) < 16 in heat_check()

pksensi 1.0.1

New vignette:

  • Add "PBTK 1-compartment model"
  • Add "Acetaminophen-PBPK model"

New example:

  • Update example in solve_mcsim()

New function:

  • Add pbtk1cpt_model()
  • Add pbpk_apap_model()
  • Add function mcsim_version()

NEW dataset:

  • Add APAP dataset

Fix Bug:

  • Fix the order argument in heat_check()
  • Add message in generate_infile()

Update function:

  • Remove argument params in solve_fun()
  • No need to define and in solve_mcsim()


  • Change function's name install_mcsim() to mcsim_install()

pksensi 1.0.0

  • Initial release in CRAN

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.


1.1.2 by Nan-Hung Hsieh, 2 months ago,

Report a bug at

Browse source code at

Authors: Nan-Hung Hsieh [aut, cre] , Brad Reisfeld [aut] , Weihsueh A. Chiu [aut]

Documentation:   PDF Manual  

GPL-3 | file LICENSE license

Imports ggplot2, data.table, deSolve, dplyr, getPass, magrittr, reshape

Suggests knitr, rmarkdown, testthat, viridis

See at CRAN