Random Subspace Ensemble Classification and Variable Screening

We propose a general ensemble classification framework, RaSE algorithm, for the sparse classification problem. In RaSE algorithm, for each weak learner, some random subspaces are generated and the optimal one is chosen to train the model on the basis of some criterion. To be adapted to the problem, a novel criterion, ratio information criterion (RIC) is put up with based on Kullback-Leibler divergence. Besides minimizing RIC, multiple criteria can be applied, for instance, minimizing extended Bayesian information criterion (eBIC), minimizing training error, minimizing the validation error, minimizing the cross-validation error, minimizing leave-one-out error. There are various choices of base classifier, for instance, linear discriminant analysis, quadratic discriminant analysis, k-nearest neighbour, logistic regression, decision trees, random forest, support vector machines. RaSE algorithm can also be applied to do feature ranking, providing us the importance of each feature based on the selected percentage in multiple subspaces. RaSE framework can be extended to the general prediction framework, including both classification and regression. We can use the selected percentages of variables for variable screening. The latest version added the variable screening function for both regression and classification problems.


News

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.

install.packages("RaSEn")

2.1.0 by Ye Tian, 4 months ago


Browse source code at https://github.com/cran/RaSEn


Authors: Ye Tian [aut, cre] and Yang Feng [aut]


Documentation:   PDF Manual  


GPL-2 license


Imports MASS, caret, class, doParallel, e1071, foreach, nnet, randomForest, rpart, stats, ggplot2, gridExtra, formatR, FNN, ranger, KernelKnn, utils

Suggests knitr, rmarkdown


See at CRAN