Found 87 packages in 0.02 seconds
Dynamic Generation of Scientific Reports
The RSP markup language makes any text-based document come alive. RSP provides a powerful markup for controlling the content and output of LaTeX, HTML, Markdown, AsciiDoc, Sweave and knitr documents (and more), e.g. 'Today's date is <%=Sys.Date()%>'. Contrary to many other literate programming languages, with RSP it is straightforward to loop over mixtures of code and text sections, e.g. in month-by-month summaries. RSP has also several preprocessing directives for incorporating static and dynamic contents of external files (local or online) among other things. Functions rstring() and rcat() make it easy to process RSP strings, rsource() sources an RSP file as it was an R script, while rfile() compiles it (even online) into its final output format, e.g. rfile('report.tex.rsp') generates 'report.pdf' and rfile('report.md.rsp') generates 'report.html'. RSP is ideal for self-contained scientific reports and R package vignettes. It's easy to use - if you know how to write an R script, you'll be up and running within minutes.
Various Programming Utilities
Utility functions useful when programming and developing R packages.
Test Coverage for Packages
Track and report code coverage for your package and (optionally) upload the results to a coverage service like 'Codecov' < https://about.codecov.io> or 'Coveralls' < https://coveralls.io>. Code coverage is a measure of the amount of code being exercised by a set of tests. It is an indirect measure of test quality and completeness. This package is compatible with any testing methodology or framework and tracks coverage of both R code and compiled C/C++/FORTRAN code.
Adding Progress Bar to '*apply' Functions
A lightweight package that adds progress bar to vectorized R functions ('*apply'). The implementation can easily be added to functions where showing the progress is useful (e.g. bootstrap). The type and style of the progress bar (with percentages or remaining time) can be set through options. Supports several parallel processing backends including future.
Use Foreach to Parallelize via the Future Framework
The 'future' package provides a unifying parallelization framework for R that supports many parallel and distributed backends. The 'foreach' package provides a powerful API for iterating over an R expression in parallel. The 'doFuture' package brings the best of the two together. There are two alternative ways to use this package. The recommended approach is to use 'y <- foreach(...) %dofuture% { ... }', which does not require using 'registerDoFuture()' and has many advantages over '%dopar%'. The alternative is the traditional 'foreach' approach by registering the 'foreach' adapter 'registerDoFuture()' and so that 'y <- foreach(...) %dopar% { ... }' runs in parallelizes with the 'future' framework.
Functions that Apply to Rows and Columns of Matrices (and to Vectors)
High-performing functions operating on rows and columns of matrices, e.g. col / rowMedians(), col / rowRanks(), and col / rowSds(). Functions optimized per data type and for subsetted calculations such that both memory usage and processing time is minimized. There are also optimized vector-based methods, e.g. binMeans(), madDiff() and weightedMedian().
R Object-Oriented Programming with or without References
Methods and classes for object-oriented programming in R with or without references. Large effort has been made on making definition of methods as simple as possible with a minimum of maintenance for package developers. The package has been developed since 2001 and is now considered very stable. This is a cross-platform package implemented in pure R that defines standard S3 classes without any tricks.
S3 Methods Simplified
Methods that simplify the setup of S3 generic functions and S3 methods. Major effort has been made in making definition of methods as simple as possible with a minimum of maintenance for package developers. For example, generic functions are created automatically, if missing, and naming conflict are automatically solved, if possible. The method setMethodS3() is a good start for those who in the future may want to migrate to S4. This is a cross-platform package implemented in pure R that generates standard S3 methods.
Fast and Light-Weight Caching (Memoization) of Objects and Results to Speed Up Computations
Memoization can be used to speed up repetitive and computational expensive function calls. The first time a function that implements memoization is called the results are stored in a cache memory. The next time the function is called with the same set of parameters, the results are momentarily retrieved from the cache avoiding repeating the calculations. With this package, any R object can be cached in a key-value storage where the key can be an arbitrary set of R objects. The cache memory is persistent (on the file system).
Read and Write MAT Files and Call MATLAB from Within R
Methods readMat() and writeMat() for reading and writing MAT files. For user with MATLAB v6 or newer installed (either locally or on a remote host), the package also provides methods for controlling MATLAB (trademark) via R and sending and retrieving data between R and MATLAB.