Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 564 packages in 0.18 seconds

IMD — by Matthew Gwynfryn Thomas, 3 years ago

Index of Multiple Deprivation Data for the UK

Index of Multiple Deprivation for UK nations at various geographical levels. In England, deprivation data is for Lower Layer Super Output Areas, Middle Layer Super Output Areas, Wards, and Local Authorities based on data from < https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019>. In Wales, deprivation data is for Lower Layer Super Output Areas, Middle Layer Super Output Areas, Wards, and Local Authorities based on data from < https://gov.wales/welsh-index-multiple-deprivation-full-index-update-ranks-2019>. In Scotland, deprivation data is for Data Zones, Intermediate Zones, and Council Areas based on data from < https://simd.scot>. In Northern Ireland, deprivation data is for Super Output Areas and Local Government Districts based on data from < https://www.nisra.gov.uk/statistics/deprivation/northern-ireland-multiple-deprivation-measure-2017-nimdm2017>. The 'IMD' package also provides the composite UK index developed by < https://github.com/mysociety/composite_uk_imd>.

rSDI — by Mehmet Gençer, 25 days ago

Spatial Dispersion Index (SDI) Family of Metrics for Spatial/Geographic Networks

Spatial Dispersion Index (SDI) is a generalized measurement index, or rather a family of indices to evaluate spatial dispersion of movements/flows in a network in a problem neutral way as described in: Gencer (2023) . This package computes and optionally visualizes this index with minimal hassle.

dci — by Alex Arkilanian, 3 months ago

Calculate the Dendritic Connectivity Index in River Networks

Calculate and analyze ecological connectivity across the watercourse of river networks using the Dendritic Connectivity Index.

rsmatrix — by Steve Martin, 9 months ago

Matrices for Repeat-Sales Price Indexes

Calculate the matrices in Shiller (1991, ) that serve as the foundation for many repeat-sales price indexes.

spinebil — by Tina Rashid Jafari, 2 months ago

Investigating New Projection Pursuit Index Functions

Projection pursuit is used to find interesting low-dimensional projections of high-dimensional data by optimizing an index over all possible projections. The 'spinebil' package contains methods to evaluate the performance of projection pursuit index functions using tour methods. A paper describing the methods can be found at .

turner — by Frederic Bertrand, a year ago

Turn Vectors and Lists of Vectors into Indexed Structures

Package designed for working with vectors and lists of vectors, mainly for turning them into other indexed data structures.

DBCVindex — by Davide Chicco, 18 days ago

Calculates the Density-Based Clustering Validation (DBCV) Index

A metric called 'Density-Based Clustering Validation index' (DBCV) index to evaluate clustering results, following the < https://github.com/pajaskowiak/clusterConfusion/blob/main/R/dbcv.R> 'R' implementation by Pablo Andretta Jaskowiak. Original 'DBCV' index article: Moulavi, D., Jaskowiak, P. A., Campello, R. J., Zimek, A., and Sander, J. (April 2014), "Density-based clustering validation", Proceedings of SDM 2014 -- the 2014 SIAM International Conference on Data Mining (pp. 839-847), . A more recent article on the 'DBCV' index: Chicco, D., Sabino, G.; Oneto, L.; Jurman, G. (August 2025), "The DBCV index is more informative than DCSI, CDbw, and VIASCKDE indices for unsupervised clustering internal assessment of concave-shaped and density-based clusters", PeerJ Computer Science 11:e3095 (pp. 1-), .

BayesCVI — by Onthada Preedasawakul, 2 months ago

Bayesian Cluster Validity Index

Algorithms for computing and generating plots with and without error bars for Bayesian cluster validity index (BCVI) (O. Preedasawakul, and N. Wiroonsri, A Bayesian Cluster Validity Index, Computational Statistics & Data Analysis, 202, 108053, 2025. ) based on several underlying cluster validity indexes (CVIs) including Calinski-Harabasz, Chou-Su-Lai, Davies-Bouldin, Dunn, Pakhira-Bandyopadhyay-Maulik, Point biserial correlation, the score function, Starczewski, and Wiroonsri indices for hard clustering, and Correlation Cluster Validity, the generalized C, HF, KWON, KWON2, Modified Pakhira-Bandyopadhyay-Maulik, Pakhira-Bandyopadhyay-Maulik, Tang, Wiroonsri-Preedasawakul, Wu-Li, and Xie-Beni indices for soft clustering. The package is compatible with K-means, fuzzy C means, EM clustering, and hierarchical clustering (single, average, and complete linkage). Though BCVI is compatible with any underlying existing CVIs, we recommend users to use either WI or WP as the underlying CVI.

sparseIndexTracking — by Daniel P. Palomar, 6 years ago

Design of Portfolio of Stocks to Track an Index

Computation of sparse portfolios for financial index tracking, i.e., joint selection of a subset of the assets that compose the index and computation of their relative weights (capital allocation). The level of sparsity of the portfolios, i.e., the number of selected assets, is controlled through a regularization parameter. Different tracking measures are available, namely, the empirical tracking error (ETE), downside risk (DR), Huber empirical tracking error (HETE), and Huber downside risk (HDR). See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the paper: K. Benidis, Y. Feng, and D. P. Palomar, "Sparse Portfolios for High-Dimensional Financial Index Tracking," IEEE Trans. on Signal Processing, vol. 66, no. 1, pp. 155-170, Jan. 2018. .

ActivityIndex — by Jiawei Bai, 5 years ago

Activity Index Calculation using Raw 'Accelerometry' Data

Reads raw 'accelerometry' from 'GT3X+' data and plain table data to calculate Activity Index from 'Bai et al.' (2016) . The Activity Index refers to the square root of the second-level average variance of the three 'accelerometry' axes.