Found 593 packages in 0.01 seconds
Calculate the Dendritic Connectivity Index in River Networks
Calculate and analyze ecological connectivity across the watercourse of river networks using the Dendritic Connectivity Index.
Spatial Dispersion Index (SDI) Family of Metrics for Spatial/Geographic Networks
Spatial Dispersion Index (SDI) is a generalized measurement index, or rather a family of indices to evaluate spatial dispersion of movements/flows in a network in a problem neutral way as described in: Gencer (2023)
Matrices for Repeat-Sales Price Indexes
Calculate the matrices in
Shiller (1991,
Investigating New Projection Pursuit Index Functions
Projection pursuit is used to find interesting low-dimensional
projections of high-dimensional data by optimizing an index over all
possible projections. The 'spinebil' package contains methods to evaluate
the performance of projection pursuit index functions using tour methods.
A paper describing the methods can be found at
Calculates the Density-Based Clustering Validation (DBCV) Index
A metric called 'Density-Based Clustering Validation index' (DBCV) index to evaluate clustering results, following the < https://github.com/pajaskowiak/clusterConfusion/blob/main/R/dbcv.R> 'R' implementation by Pablo Andretta Jaskowiak. Original 'DBCV' index article: Moulavi, D., Jaskowiak, P. A., Campello, R. J., Zimek, A., and Sander, J. (April 2014), "Density-based clustering validation", Proceedings of SDM 2014 -- the 2014 SIAM International Conference on Data Mining (pp. 839-847),
Bayesian Cluster Validity Index
Algorithms for computing and generating plots with and without error bars for Bayesian cluster validity index (BCVI) (O. Preedasawakul, and N. Wiroonsri, A Bayesian Cluster Validity Index, Computational Statistics & Data Analysis, 202, 108053, 2025.
Turn Vectors and Lists of Vectors into Indexed Structures
Package designed for working with vectors and lists of vectors, mainly for turning them into other indexed data structures.
Design of Portfolio of Stocks to Track an Index
Computation of sparse portfolios for financial index tracking, i.e., joint
selection of a subset of the assets that compose the index and computation
of their relative weights (capital allocation). The level of sparsity of the
portfolios, i.e., the number of selected assets, is controlled through a
regularization parameter. Different tracking measures are available, namely,
the empirical tracking error (ETE), downside risk (DR), Huber empirical
tracking error (HETE), and Huber downside risk (HDR). See vignette for a
detailed documentation and comparison, with several illustrative examples.
The package is based on the paper:
K. Benidis, Y. Feng, and D. P. Palomar, "Sparse Portfolios for High-Dimensional
Financial Index Tracking," IEEE Trans. on Signal Processing, vol. 66, no. 1,
pp. 155-170, Jan. 2018.
Compute Seasonality Index, Seasonalized and Deseaonalised the Time Series Data
The computation of a seasonal index is a fundamental step in time-series forecasting when the data exhibits seasonality. Specifically, a seasonal index quantifies — for each season (e.g. month, quarter, week) — the relative magnitude of the seasonal effect compared to the overall average level of the series. This package has been developed to compute seasonal index for time series data and it also seasonalise and desesaonalise the time series data.
Activity Index Calculation using Raw 'Accelerometry' Data
Reads raw 'accelerometry' from 'GT3X+' data and
plain table data to calculate Activity Index from 'Bai et al.' (2016)