Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 491 packages in 0.01 seconds

effectsize — by Mattan S. Ben-Shachar, 5 months ago

Indices of Effect Size

Provide utilities to work with indices of effect size for a wide variety of models and hypothesis tests (see list of supported models using the function 'insight::supported_models()'), allowing computation of and conversion between indices such as Cohen's d, r, odds, etc. References: Ben-Shachar et al. (2020) .

rpanel — by Adrian Bowman, 3 years ago

Simple Interactive Controls for R using the 'tcltk' Package

A set of functions to build simple GUI controls for R functions. These are built on the 'tcltk' package. Uses could include changing a parameter on a graph by animating it with a slider or a "doublebutton", up to more sophisticated control panels. Some functions for specific graphical tasks, referred to as 'cartoons', are provided.

broom — by Simon Couch, a month ago

Convert Statistical Objects into Tidy Tibbles

Summarizes key information about statistical objects in tidy tibbles. This makes it easy to report results, create plots and consistently work with large numbers of models at once. Broom provides three verbs that each provide different types of information about a model. tidy() summarizes information about model components such as coefficients of a regression. glance() reports information about an entire model, such as goodness of fit measures like AIC and BIC. augment() adds information about individual observations to a dataset, such as fitted values or influence measures.

Rcmdr — by John Fox, a year ago

R Commander

A platform-independent basic-statistics GUI (graphical user interface) for R, based on the tcltk package.

freqparcoord — by Norm Matloff, 10 years ago

Novel Methods for Parallel Coordinates

New approaches to parallel coordinates plots for multivariate data visualization, including applications to clustering, outlier hunting and regression diagnostics. Includes general functions for multivariate nonparametric density and regression estimation, using parallel computation.

bestNormalize — by Ryan Andrew Peterson, 2 years ago

Normalizing Transformation Functions

Estimate a suite of normalizing transformations, including a new adaptation of a technique based on ranks which can guarantee normally distributed transformed data if there are no ties: ordered quantile normalization (ORQ). ORQ normalization combines a rank-mapping approach with a shifted logit approximation that allows the transformation to work on data outside the original domain. It is also able to handle new data within the original domain via linear interpolation. The package is built to estimate the best normalizing transformation for a vector consistently and accurately. It implements the Box-Cox transformation, the Yeo-Johnson transformation, three types of Lambert WxF transformations, and the ordered quantile normalization transformation. It estimates the normalization efficacy of other commonly used transformations, and it allows users to specify custom transformations or normalization statistics. Finally, functionality can be integrated into a machine learning workflow via recipes.

QRM — by Bernhard Pfaff, 6 months ago

Provides R-Language Code to Examine Quantitative Risk Management Concepts

Provides functions/methods to accompany the book Quantitative Risk Management: Concepts, Techniques and Tools by Alexander J. McNeil, Ruediger Frey, and Paul Embrechts.

nlraa — by Fernando Miguez, 2 months ago

Nonlinear Regression for Agricultural Applications

Additional nonlinear regression functions using self-start (SS) algorithms. One of the functions is the Beta growth function proposed by Yin et al. (2003) . There are several other functions with breakpoints (e.g. linear-plateau, plateau-linear, exponential-plateau, plateau-exponential, quadratic-plateau, plateau-quadratic and bilinear), a non-rectangular hyperbola and a bell-shaped curve. Twenty eight (28) new self-start (SS) functions in total. This package also supports the publication 'Nonlinear regression Models and applications in agricultural research' by Archontoulis and Miguez (2015) , a book chapter with similar material and a publication by Oddi et. al. (2019) in Ecology and Evolution . The function 'nlsLMList' uses 'nlsLM' for fitting, but it is otherwise almost identical to 'nlme::nlsList'.In addition, this release of the package provides functions for conducting simulations for 'nlme' and 'gnls' objects as well as bootstrapping. These functions are intended to work with the modeling framework of the 'nlme' package. It also provides four vignettes with extended examples.

rioja — by Steve Juggins, a year ago

Analysis of Quaternary Science Data

Constrained clustering, transfer functions, and other methods for analysing Quaternary science data.

riskRegression — by Thomas Alexander Gerds, a month ago

Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks

Implementation of the following methods for event history analysis. Risk regression models for survival endpoints also in the presence of competing risks are fitted using binomial regression based on a time sequence of binary event status variables. A formula interface for the Fine-Gray regression model and an interface for the combination of cause-specific Cox regression models. A toolbox for assessing and comparing performance of risk predictions (risk markers and risk prediction models). Prediction performance is measured by the Brier score and the area under the ROC curve for binary possibly time-dependent outcome. Inverse probability of censoring weighting and pseudo values are used to deal with right censored data. Lists of risk markers and lists of risk models are assessed simultaneously. Cross-validation repeatedly splits the data, trains the risk prediction models on one part of each split and then summarizes and compares the performance across splits.