Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 467 packages in 0.22 seconds

flexmix — by Bettina Gruen, a month ago

Flexible Mixture Modeling

A general framework for finite mixtures of regression models using the EM algorithm is implemented. The E-step and all data handling are provided, while the M-step can be supplied by the user to easily define new models. Existing drivers implement mixtures of standard linear models, generalized linear models and model-based clustering.

ggvis — by Hadley Wickham, a year ago

Interactive Grammar of Graphics

An implementation of an interactive grammar of graphics, taking the best parts of 'ggplot2', combining them with the reactive framework of 'shiny' and drawing web graphics using 'vega'.

evgam — by Ben Youngman, 3 years ago

Generalised Additive Extreme Value Models

Methods for fitting various extreme value distributions with parameters of generalised additive model (GAM) form are provided. For details of distributions see Coles, S.G. (2001) , GAMs see Wood, S.N. (2017) , and the fitting approach see Wood, S.N., Pya, N. & Safken, B. (2016) . Details of how evgam works and various examples are given in Youngman, B.D. (2022) .

coenoflex — by David W. Roberts, 9 years ago

Gradient-Based Coenospace Vegetation Simulator

Simulates the composition of samples of vegetation according to gradient-based vegetation theory. Features a flexible algorithm incorporating competition and complex multi-gradient interaction.

tvem — by John J. Dziak, 2 years ago

Time-Varying Effect Models

Fits time-varying effect models (TVEM). These are a kind of application of varying-coefficient models in the context of longitudinal data, allowing the strength of linear, logistic, or Poisson regression relationships to change over time. These models are described further in Tan, Shiyko, Li, Li & Dierker (2012) . We thank Kaylee Litson, Patricia Berglund, Yajnaseni Chakraborti, and Hanjoo Kim for their valuable help with testing the package and the documentation. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

bamlss — by Nikolaus Umlauf, 6 months ago

Bayesian Additive Models for Location, Scale, and Shape (and Beyond)

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) and the R package in Umlauf, Klein, Simon, Zeileis (2021) .

ez — by Michael A. Lawrence, 8 years ago

Easy Analysis and Visualization of Factorial Experiments

Facilitates easy analysis of factorial experiments, including purely within-Ss designs (a.k.a. "repeated measures"), purely between-Ss designs, and mixed within-and-between-Ss designs. The functions in this package aim to provide simple, intuitive and consistent specification of data analysis and visualization. Visualization functions also include design visualization for pre-analysis data auditing, and correlation matrix visualization. Finally, this package includes functions for non-parametric analysis, including permutation tests and bootstrap resampling. The bootstrap function obtains predictions either by cell means or by more advanced/powerful mixed effects models, yielding predictions and confidence intervals that may be easily visualized at any level of the experiment's design.

MFPCA — by Clara Happ-Kurz, 3 years ago

Multivariate Functional Principal Component Analysis for Data Observed on Different Dimensional Domains

Calculate a multivariate functional principal component analysis for data observed on different dimensional domains. The estimation algorithm relies on univariate basis expansions for each element of the multivariate functional data (Happ & Greven, 2018) . Multivariate and univariate functional data objects are represented by S4 classes for this type of data implemented in the package 'funData'. For more details on the general concepts of both packages and a case study, see Happ-Kurz (2020) .

mrds — by Laura Marshall, 5 months ago

Mark-Recapture Distance Sampling

Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.

VarSelLCM — by Mohammed Sedki, 4 years ago

Variable Selection for Model-Based Clustering of Mixed-Type Data Set with Missing Values

Full model selection (detection of the relevant features and estimation of the number of clusters) for model-based clustering (see reference here ). Data to analyze can be continuous, categorical, integer or mixed. Moreover, missing values can occur and do not necessitate any pre-processing. Shiny application permits an easy interpretation of the results.