Found 492 packages in 0.03 seconds
Forecasting Mortality, Fertility, Migration and Population Data
Functions for demographic analysis including lifetable calculations; Lee-Carter modelling; functional data analysis of mortality rates, fertility rates, net migration numbers; and stochastic population forecasting.
Tidying Methods for Mixed Models
Convert fitted objects from various R mixed-model packages into tidy data frames along the lines of the 'broom' package. The package provides three S3 generics for each model: tidy(), which summarizes a model's statistical findings such as coefficients of a regression; augment(), which adds columns to the original data such as predictions, residuals and cluster assignments; and glance(), which provides a one-row summary of model-level statistics.
Indices of Effect Size
Provide utilities to work with indices of effect size for a wide
variety of models and hypothesis tests (see list of supported models using
the function 'insight::supported_models()'), allowing computation of and
conversion between indices such as Cohen's d, r, odds, etc.
References: Ben-Shachar et al. (2020)
Simple Interactive Controls for R using the 'tcltk' Package
A set of functions to build simple GUI controls for R functions. These are built on the 'tcltk' package. Uses could include changing a parameter on a graph by animating it with a slider or a "doublebutton", up to more sophisticated control panels. Some functions for specific graphical tasks, referred to as 'cartoons', are provided.
Convert Statistical Objects into Tidy Tibbles
Summarizes key information about statistical objects in tidy tibbles. This makes it easy to report results, create plots and consistently work with large numbers of models at once. Broom provides three verbs that each provide different types of information about a model. tidy() summarizes information about model components such as coefficients of a regression. glance() reports information about an entire model, such as goodness of fit measures like AIC and BIC. augment() adds information about individual observations to a dataset, such as fitted values or influence measures.
R Commander
A platform-independent basic-statistics GUI (graphical user interface) for R, based on the tcltk package.
Normalizing Transformation Functions
Estimate a suite of normalizing transformations, including a new adaptation of a technique based on ranks which can guarantee normally distributed transformed data if there are no ties: ordered quantile normalization (ORQ). ORQ normalization combines a rank-mapping approach with a shifted logit approximation that allows the transformation to work on data outside the original domain. It is also able to handle new data within the original domain via linear interpolation. The package is built to estimate the best normalizing transformation for a vector consistently and accurately. It implements the Box-Cox transformation, the Yeo-Johnson transformation, three types of Lambert WxF transformations, and the ordered quantile normalization transformation. It estimates the normalization efficacy of other commonly used transformations, and it allows users to specify custom transformations or normalization statistics. Finally, functionality can be integrated into a machine learning workflow via recipes.
Novel Methods for Parallel Coordinates
New approaches to parallel coordinates plots for multivariate data visualization, including applications to clustering, outlier hunting and regression diagnostics. Includes general functions for multivariate nonparametric density and regression estimation, using parallel computation.
Provides R-Language Code to Examine Quantitative Risk Management Concepts
Provides functions/methods to accompany the book Quantitative Risk Management: Concepts, Techniques and Tools by Alexander J. McNeil, Ruediger Frey, and Paul Embrechts.
Nonlinear Regression for Agricultural Applications
Additional nonlinear regression functions using self-start (SS) algorithms. One of the functions is the Beta growth function proposed by Yin et al. (2003)