Found 926 packages in 0.01 seconds
Change Point Detection
Time series analysis of network connectivity. Detects and visualizes change points between networks.
Methods included in the package are discussed in depth in Baek, C., Gates, K. M., Leinwand, B., Pipiras, V. (2021)
"Two sample tests for high-dimensional auto-covariances"
Tokenization, Parts of Speech Tagging, Lemmatization and Dependency Parsing with the 'UDPipe' 'NLP' Toolkit
This natural language processing toolkit provides language-agnostic
'tokenization', 'parts of speech tagging', 'lemmatization' and 'dependency
parsing' of raw text. Next to text parsing, the package also allows you to train
annotation models based on data of 'treebanks' in 'CoNLL-U' format as provided
at < https://universaldependencies.org/format.html>. The techniques are explained
in detail in the paper: 'Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0
with UDPipe', available at
Detect Heatwaves and Cold-Spells
The different methods for defining, detecting, and categorising the extreme events
known as heatwaves or cold-spells, as first proposed in Hobday et al. (2016)
Change-Points Detections for Changes in Variance
Detection of change-points for variance of heteroscedastic Gaussian variables with piecewise constant variance function. Adelfio, G. (2012), Change-point detection for variance piecewise constant models, Communications in Statistics, Simulation and Computation, 41:4, 437-448,
Same Species Sample Contamination Detection
Imports Variant Calling Format file into R. It can detect whether a sample contains contaminant from the same species. In the first stage of the approach, a change-point detection method is used to identify copy number variations for filtering. Next, features are extracted from the data for a support vector machine model. For log-likelihood calculation, the deviation parameter is estimated by maximum likelihood method. Using a radial basis function kernel support vector machine, the contamination of a sample can be detected.
Probability of Detection for Grab Sample Selection
Functions for obtaining the probability of detection, for grab samples selection by using two different methods such as systematic or random based on two-state Markov chain model. For detection probability calculation, we used results from Bhat, U. and Lal, R. (1988)
Probability of Detection for Qualitative PCR Methods
This tool computes the probability of detection (POD) curve and the limit of detection (LOD), i.e. the number of copies of the target DNA sequence required to ensure a 95 % probability of detection (LOD95). Other quantiles of the LOD can be specified.
This is a reimplementation of the mathematical-statistical modelling of the validation of qualitative polymerase chain reaction (PCR) methods within a single laboratory as provided by the commercial tool 'PROLab' < http://quodata.de/>. The modelling itself has been described by Uhlig et al. (2015)
Sleep Cycle Detection
Sleep cycles are largely detected according to the originally proposed criteria by Feinberg & Floyd (1979)
Detection of Outliers in Circular-Circular Regression
Detection of outliers in circular-circular regression models, modifying its and estimating of models parameters.
A Tidy Framework for Changepoint Detection Analysis
Changepoint detection algorithms for R are widespread but have different interfaces and reporting conventions. This makes the comparative analysis of results difficult. We solve this problem by providing a tidy, unified interface for several different changepoint detection algorithms. We also provide consistent numerical and graphical reporting leveraging the 'broom' and 'ggplot2' packages.