Found 101 packages in 0.03 seconds
Data Sets for Psychometric Modeling
Collection of data sets from various assessments that can be used to
evaluate psychometric models. These data sets have been analyzed in the
following papers that introduced new methodology as part of the application section:
Jimenez, A., Balamuta, J. J., & Culpepper, S. A. (2023)
Bayesian Modeling via Frequentist Goodness-of-Fit
A Bayesian data modeling scheme that performs four interconnected tasks: (i) characterizes the uncertainty of the elicited parametric prior; (ii) provides exploratory diagnostic for checking prior-data conflict; (iii) computes the final statistical prior density estimate; and (iv) executes macro- and micro-inference. Primary reference is Mukhopadhyay, S. and Fletcher, D. 2018 paper "Generalized Empirical Bayes via Frequentist Goodness of Fit" (< https://www.nature.com/articles/s41598-018-28130-5 >).
Choi and Hall Style Data Sharpening
Functions for use in perturbing data prior to use of nonparametric smoothers and clustering.
Generalized Additive Latent and Mixed Models
Estimates generalized additive latent and
mixed models using maximum marginal likelihood,
as defined in Sorensen et al. (2023)
Data sets from "SAS System for Mixed Models"
Data sets and sample lmer analyses corresponding to the examples in Littell, Milliken, Stroup and Wolfinger (1996), "SAS System for Mixed Models", SAS Institute.
Transformation Models
Formula-based user-interfaces to specific transformation models
implemented in package 'mlt' (
Geographic and Taxonomic Occurrence R-Based Scrubbing
Streamlines downloading and cleaning biodiversity data from Integrated Digitized Biocollections (iDigBio) and the Global Biodiversity Information Facility (GBIF).
Compute Decision Interval and Average Run Length for CUSUM Charts
Computation of decision intervals (H) and average run lengths (ARL) for CUSUM charts. Details of the method are seen in Hawkins and Olwell (2012): Cumulative sum charts and charting for quality improvement, Springer Science & Business Media.
Similarity-Based Segmentation of Multidimensional Signals
A dynamic programming solution to segmentation based on
maximization of arbitrary similarity measures within segments.
The general idea, theory and this implementation are described in
Machne, Murray & Stadler (2017)
Asymptotic Classification Theory for Cognitive Diagnosis
Cluster analysis for cognitive diagnosis based on the Asymptotic Classification Theory (Chiu, Douglas & Li, 2009;