Found 7277 packages in 0.02 seconds
Functional Data Analysis in a Mixed Model Framework
Likelihood based analysis of 1-dimension functional data
in a mixed-effects model framework. Matrix computation are
approximated by semi-explicit operator equivalents with linear
computational complexity. Markussen (2013)
Bayesian Estimation for Quantile Regression Mixed Models
Using a Bayesian estimation procedure, this package fits linear quantile regression models such as linear quantile models, linear quantile mixed models, quantile regression joint models for time-to-event and longitudinal data. The estimation procedure is based on the asymmetric Laplace distribution and the 'JAGS' software is used to get posterior samples (Yang, Luo, DeSantis (2019)
Gradient Boosting for Generalized Additive Mixed Models
Provides a novel framework to estimate mixed models via gradient boosting. The implemented functions are based on 'mboost' and 'lme4'. Hence, the family range is predetermined by 'lme4'. A correction mechanism for cluster-constant covariates is implemented as well as an estimation of random effects' covariance.
Temporal Contributions on Trends using Mixed Models
Method to estimate the effect of the trend in predictor variables on the observed trend
of the response variable using mixed models with temporal autocorrelation. See Fernández-Martínez et
al. (2017 and 2019)
Data Transforming Augmentation for Linear Mixed Models
We provide a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyper-parameters) via an EM algorithm or posterior samples of those parameters via MCMC. Also see Tak et al. (2019)
Penalized Linear Mixed Models for Correlated Data
Fits penalized linear mixed models that correct for unobserved confounding factors. 'plmmr' infers and corrects for the presence of unobserved confounding effects such as population stratification and environmental heterogeneity. It then fits a linear model via penalized maximum likelihood. Originally designed for the multivariate analysis of single nucleotide polymorphisms (SNPs) measured in a genome-wide association study (GWAS), 'plmmr' eliminates the need for subpopulation-specific analyses and post-analysis p-value adjustments. Functions for the appropriate processing of 'PLINK' files are also supplied. For examples, see the package homepage. < https://pbreheny.github.io/plmmr/>.
Bayesian Mixed Models for Qualitative Individual Differences
Test whether equality and order constraints hold for all
individuals simultaneously by comparing Bayesian mixed models through Bayes
factors. A tutorial style vignette and a quickstart guide are available, via
vignette("manual", "quid"), and vignette("quickstart", "quid") respectively.
See Haaf and Rouder (2017)
Bayesian Longitudinal Regularized Quantile Mixed Model
In longitudinal studies, the same subjects are measured repeatedly over time, leading to correlations among the repeated measurements. Properly accounting for the intra-cluster correlations in the presence of data heterogeneity and long tailed distributions of the disease phenotype is challenging, especially in the context of high dimensional regressions. In this package, we developed a Bayesian quantile mixed effects model with spike- and -slab priors to dissect important gene - environment interactions under longitudinal genomics studies. An efficient Gibbs sampler has been developed to facilitate fast computation. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in 'C++'. The development of this software package and the associated statistical methods have been partially supported by an Innovative Research Award from Johnson Cancer Research Center, Kansas State University.
Multiplicative Mixed Models using the Template Model Builder
Fit multiplicative mixed models using maximum likelihood estimation via the Template
Model Builder (TMB), Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM (2016)
Bayesian Model Selection for Generalized Linear Mixed Models
A Bayesian model selection approach for generalized linear mixed models. Currently, 'GLMMselect' can be used for Poisson GLMM and Bernoulli GLMM. 'GLMMselect' can select fixed effects and random effects simultaneously. Covariance structures for the random effects are a product of a unknown scalar and a known semi-positive definite matrix. 'GLMMselect' can be widely used in areas such as longitudinal studies, genome-wide association studies, and spatial statistics. 'GLMMselect' is based on Xu, Ferreira, Porter, and Franck (202X), Bayesian Model Selection Method for Generalized Linear Mixed Models, Biometrics, under review.