Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 90 packages in 0.01 seconds

coat — by Alexander Hapfelmeier, 2 years ago

Conditional Method Agreement Trees (COAT)

Agreement of continuously scaled measurements made by two techniques, devices or methods is usually evaluated by the well-established Bland-Altman analysis or plot. Conditional method agreement trees (COAT), proposed by Karapetyan, Zeileis, Henriksen, and Hapfelmeier (2023) , embed the Bland-Altman analysis in the framework of recursive partitioning to explore heterogeneous method agreement in dependence of covariates. COAT can also be used to perform a Bland-Altman test for differences in method agreement.

mpt — by Florian Wickelmaier, 6 months ago

Multinomial Processing Tree Models

Fitting and testing multinomial processing tree (MPT) models, a class of nonlinear models for categorical data. The parameters are the link probabilities of a tree-like graph and represent the latent cognitive processing steps executed to arrive at observable response categories (Batchelder & Riefer, 1999 ; Erdfelder et al., 2009 ; Riefer & Batchelder, 1988 ).

aldvmm — by Mark Pletscher, a year ago

Adjusted Limited Dependent Variable Mixture Models

The goal of the package 'aldvmm' is to fit adjusted limited dependent variable mixture models of health state utilities. Adjusted limited dependent variable mixture models are finite mixtures of normal distributions with an accumulation of density mass at the limits, and a gap between 100% quality of life and the next smaller utility value. The package 'aldvmm' uses the likelihood and expected value functions proposed by Hernandez Alava and Wailoo (2015) using normal component distributions and a multinomial logit model of probabilities of component membership.

mpath — by Zhu Wang, 9 months ago

Regularized Linear Models

Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) , Wang et al. (2015) , Wang et al. (2016) , Wang (2021) , Wang (2024) .

trtf — by Torsten Hothorn, 2 months ago

Transformation Trees and Forests

Recursive partytioning of transformation models with corresponding random forest for conditional transformation models as described in 'Transformation Forests' (Hothorn and Zeileis, 2021, ) and 'Top-Down Transformation Choice' (Hothorn, 2018, ).

bfast — by Dainius MasiliĆ«nas, 5 months ago

Breaks for Additive Season and Trend

Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. 'BFAST' can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. 'BFAST' monitoring functionality is described in Verbesselt et al. (2010) . 'BFAST monitor' provides functionality to detect disturbance in near real-time based on 'BFAST'- type models, and is described in Verbesselt et al. (2012) . 'BFAST Lite' approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks).

condvis — by Mark O'Connell, 7 years ago

Conditional Visualization for Statistical Models

Exploring fitted models by interactively taking 2-D and 3-D sections in data space.

fddm — by Henrik Singmann, 9 months ago

Fast Implementation of the Diffusion Decision Model

Provides the probability density function (PDF), cumulative distribution function (CDF), the first-order and second-order partial derivatives of the PDF, and a fitting function for the diffusion decision model (DDM; e.g., Ratcliff & McKoon, 2008, ) with across-trial variability in the drift rate. Because the PDF, its partial derivatives, and the CDF of the DDM both contain an infinite sum, they need to be approximated. 'fddm' implements all published approximations (Navarro & Fuss, 2009, ; Gondan, Blurton, & Kesselmeier, 2014, ; Blurton, Kesselmeier, & Gondan, 2017, ; Hartmann & Klauer, 2021, ) plus new approximations. All approximations are implemented purely in 'C++' providing faster speed than existing packages.

R2BayesX — by Nikolaus Umlauf, 8 days ago

Estimate Structured Additive Regression Models with 'BayesX'

An R interface to estimate structured additive regression (STAR) models with 'BayesX'.

strucchangeRcpp — by Dainius Masiliunas, 6 months ago

Testing, Monitoring, and Dating Structural Changes: C++ Version

A fast implementation with additional experimental features for testing, monitoring and dating structural changes in (linear) regression models. 'strucchangeRcpp' features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g. cumulative/moving sum, recursive/moving estimates) and F statistics, respectively. These methods are described in Zeileis et al. (2002) . Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals, and their magnitude as well as the model fit can be evaluated using a variety of statistical measures.