Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 6955 packages in 0.03 seconds

simmr — by Emma Govan, a month ago

A Stable Isotope Mixing Model

Fits Stable Isotope Mixing Models (SIMMs) and is meant as a longer term replacement to the previous widely-used package SIAR. SIMMs are used to infer dietary proportions of organisms consuming various food sources from observations on the stable isotope values taken from the organisms' tissue samples. However SIMMs can also be used in other scenarios, such as in sediment mixing or the composition of fatty acids. The main functions are simmr_load() and simmr_mcmc(). The two vignettes contain a quick start and a full listing of all the features. The methods used are detailed in the papers Parnell et al 2010 , and Parnell et al 2013 .

lfmm — by Basile Jumentier, 3 years ago

Latent Factor Mixed Models

Fast and accurate inference of gene-environment associations (GEA) in genome-wide studies (Caye et al., 2019, ). We developed a least-squares estimation approach for confounder and effect sizes estimation that provides a unique framework for several categories of genomic data, not restricted to genotypes. The speed of the new algorithm is several times faster than the existing GEA approaches, then our previous version of the 'LFMM' program present in the 'LEA' package (Frichot and Francois, 2015, ).

IsotopeR — by Jake Ferguson, 8 years ago

Stable Isotope Mixing Model

Estimates diet contributions from isotopic sources using JAGS. Includes estimation of concentration dependence and measurement error.

blme — by Vincent Dorie, 3 months ago

Bayesian Linear Mixed-Effects Models

Maximum a posteriori estimation for linear and generalized linear mixed-effects models in a Bayesian setting, implementing the methods of Chung, et al. (2013) . Extends package 'lme4' (Bates, Maechler, Bolker, and Walker (2015) ).

gemma2 — by Frederick Boehm, 4 years ago

GEMMA Multivariate Linear Mixed Model

Fits a multivariate linear mixed effects model that uses a polygenic term, after Zhou & Stephens (2014) (< https://www.nature.com/articles/nmeth.2848>). Of particular interest is the estimation of variance components with restricted maximum likelihood (REML) methods. Genome-wide efficient mixed-model association (GEMMA), as implemented in the package 'gemma2', uses an expectation-maximization algorithm for variance components inference for use in quantitative trait locus studies.

minque — by Jixiang Wu, 5 years ago

Various Linear Mixed Model Analyses

This package offers three important components: (1) to construct a use-defined linear mixed model, (2) to employ one of linear mixed model approaches: minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1971) for variance component estimation and random effect prediction; and (3) to employ a jackknife resampling technique to conduct various statistical tests. In addition, this package provides the function for model or data evaluations.This R package offers fast computations for large data sets analyses for various irregular data structures.

galamm — by Øystein Sørensen, 3 months ago

Generalized Additive Latent and Mixed Models

Estimates generalized additive latent and mixed models using maximum marginal likelihood, as defined in Sorensen et al. (2023) , which is an extension of Rabe-Hesketh and Skrondal (2004)'s unifying framework for multilevel latent variable modeling . Efficient computation is done using sparse matrix methods, Laplace approximation, and automatic differentiation. The framework includes generalized multilevel models with heteroscedastic residuals, mixed response types, factor loadings, smoothing splines, crossed random effects, and combinations thereof. Syntax for model formulation is close to 'lme4' (Bates et al. (2015) ) and 'PLmixed' (Rockwood and Jeon (2019) ).

dmm — by Neville Jackson, 6 months ago

Dyadic Mixed Model for Pedigree Data

Dyadic mixed model analysis with multi-trait responses and pedigree-based partitioning of individual variation into a range of environmental and genetic variance components for individual and maternal effects. Method documented in dmmOverview.pdf; dmm is an implementation of dispersion mean model described by Searle et al. (1992) "Variance Components", Wiley, NY.

multifamm — by Alexander Volkmann, 3 years ago

Multivariate Functional Additive Mixed Models

An implementation for multivariate functional additive mixed models (multiFAMM), see Volkmann et al. (2021, ). It builds on developed methods for univariate sparse functional regression models and multivariate functional principal component analysis. This package contains the function to run a multiFAMM and some convenience functions useful when working with large models. An additional package on GitHub contains more convenience functions to reproduce the analyses of the corresponding paper (< https://github.com/alexvolkmann/multifammPaper>).

gammi — by Nathaniel E. Helwig, 2 months ago

Generalized Additive Mixed Model Interface

An interface for fitting generalized additive models (GAMs) and generalized additive mixed models (GAMMs) using the 'lme4' package as the computational engine, as described in Helwig (2024) . Supports default and formula methods for model specification, additive and tensor product splines for capturing nonlinear effects, and automatic determination of spline type based on the class of each predictor. Includes an S3 plot method for visualizing the (nonlinear) model terms, an S3 predict method for forming predictions from a fit model, and an S3 summary method for conducting significance testing using the Bayesian interpretation of a smoothing spline.