Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1041 packages in 0.02 seconds

outliertree — by David Cortes, a year ago

Explainable Outlier Detection Through Decision Tree Conditioning

Outlier detection method that flags suspicious values within observations, constrasting them against the normal values in a user-readable format, potentially describing conditions within the data that make a given outlier more rare. Full procedure is described in Cortes (2020) . Loosely based on the 'GritBot' < https://www.rulequest.com/gritbot-info.html> software.

Distance — by Laura Marshall, 5 months ago

Distance Sampling Detection Function and Abundance Estimation

A simple way of fitting detection functions to distance sampling data for both line and point transects. Adjustment term selection, left and right truncation as well as monotonicity constraints and binning are supported. Abundance and density estimates can also be calculated (via a Horvitz-Thompson-like estimator) if survey area information is provided. See Miller et al. (2019) for more information on methods and < https://distancesampling.org/resources/vignettes.html> for example analyses.

cpm — by Gordon J. Ross, 5 years ago

Sequential and Batch Change Detection Using Parametric and Nonparametric Methods

Sequential and batch change detection for univariate data streams, using the change point model framework. Functions are provided to allow nonparametric distribution-free change detection in the mean, variance, or general distribution of a given sequence of observations. Parametric change detection methods are also provided for Gaussian, Bernoulli and Exponential sequences. Both the batch (Phase I) and sequential (Phase II) settings are supported, and the sequences may contain either a single or multiple change points. A full description of this package is available in Ross, G.J (2015) - "Parametric and nonparametric sequential change detection in R" available at < https://www.jstatsoft.org/article/view/v066i03>.

text — by Oscar Kjell, 4 months ago

Analyses of Text using Transformers Models from HuggingFace, Natural Language Processing and Machine Learning

Link R with Transformers from Hugging Face to transform text variables to word embeddings; where the word embeddings are used to statistically test the mean difference between set of texts, compute semantic similarity scores between texts, predict numerical variables, and visual statistically significant words according to various dimensions etc. For more information see < https://www.r-text.org>.

yaImpute — by Jeffrey S. Evans, a year ago

Nearest Neighbor Observation Imputation and Evaluation Tools

Performs nearest neighbor-based imputation using one or more alternative approaches to processing multivariate data. These include methods based on canonical correlation: analysis, canonical correspondence analysis, and a multivariate adaptation of the random forest classification and regression techniques of Leo Breiman and Adele Cutler. Additional methods are also offered. The package includes functions for comparing the results from running alternative techniques, detecting imputation targets that are notably distant from reference observations, detecting and correcting for bias, bootstrapping and building ensemble imputations, and mapping results.

tesseract — by Jeroen Ooms, 9 months ago

Open Source OCR Engine

Bindings to 'Tesseract': a powerful optical character recognition (OCR) engine that supports over 100 languages. The engine is highly configurable in order to tune the detection algorithms and obtain the best possible results.

cld2 — by Jeroen Ooms, 9 months ago

Google's Compact Language Detector 2

Bindings to Google's C++ library Compact Language Detector 2 (see < https://github.com/cld2owners/cld2#readme> for more information). Probabilistically detects over 80 languages in plain text or HTML. For mixed-language input it returns the top three detected languages and their approximate proportion of the total classified text bytes (e.g. 80% English and 20% French out of 1000 bytes). There is also a 'cld3' package on CRAN which uses a neural network model instead.

VGAM — by Thomas Yee, 17 days ago

Vector Generalized Linear and Additive Models

An implementation of about 6 major classes of statistical regression models. The central algorithm is Fisher scoring and iterative reweighted least squares. At the heart of this package are the vector generalized linear and additive model (VGLM/VGAM) classes. VGLMs can be loosely thought of as multivariate GLMs. VGAMs are data-driven VGLMs that use smoothing. The book "Vector Generalized Linear and Additive Models: With an Implementation in R" (Yee, 2015) gives details of the statistical framework and the package. Currently only fixed-effects models are implemented. Many (100+) models and distributions are estimated by maximum likelihood estimation (MLE) or penalized MLE. The other classes are RR-VGLMs (reduced-rank VGLMs), quadratic RR-VGLMs, doubly constrained RR-VGLMs, quadratic RR-VGLMs, reduced-rank VGAMs, RCIMs (row-column interaction models)---these classes perform constrained and unconstrained quadratic ordination (CQO/UQO) models in ecology, as well as constrained additive ordination (CAO). Hauck-Donner effect detection is implemented. Note that these functions are subject to change; see the NEWS and ChangeLog files for latest changes.

arkhe — by Nicolas Frerebeau, 7 months ago

Tools for Cleaning Rectangular Data

A dependency-free collection of simple functions for cleaning rectangular data. This package allows to detect, count and replace values or discard rows/columns using a predicate function. In addition, it provides tools to check conditions and return informative error messages.

rmarchingcubes — by S. H. Wilks, 3 months ago

Calculate 3D Contour Meshes Using the Marching Cubes Algorithm

A port of the C++ routine for applying the marching cubes algorithm written by Thomas Lewiner et al. (2012) into an R package. The package supplies the contour3d() function, which takes a 3-dimensional array of voxel data and calculates the vertices, vertex normals, and faces for a 3d mesh representing the contour(s) at a given level.