Found 121 packages in 0.03 seconds
Interface Between 'GRASS' Geographical Information System and 'R'
An interface between the 'GRASS' geographical information system ('GIS') and 'R', based on starting 'R' from within the 'GRASS' 'GIS' environment, or running a free-standing 'R' session in a temporary 'GRASS' location; the package provides facilities for using all 'GRASS' commands from the 'R' command line. The original interface package for 'GRASS 5' (2000-2010) is described in Bivand (2000)
Quantile Regression
Estimation and inference methods for models for conditional quantile functions:
Linear and nonlinear parametric and non-parametric (total variation penalized) models
for conditional quantiles of a univariate response and several methods for handling
censored survival data. Portfolio selection methods based on expected shortfall
risk are also now included. See Koenker, R. (2005) Quantile Regression, Cambridge U. Press,
Spatial Data Analysis
Methods for spatial data analysis with vector (points, lines, polygons) and raster (grid) data. Methods for vector data include geometric operations such as intersect and buffer. Raster methods include local, focal, global, zonal and geometric operations. The predict and interpolate methods facilitate the use of regression type (interpolation, machine learning) models for spatial prediction, including with satellite remote sensing data. Processing of very large files is supported. See the manual and tutorials on < https://rspatial.org/> to get started. 'terra' replaces the 'raster' package ('terra' can do more, and it is faster and easier to use).
Access to the 'Geospatial Data Abstraction Library' ('GDAL')
Provides low-level access to 'GDAL' functionality. 'GDAL' is the 'Geospatial Data Abstraction Library' a translator for raster and vector geospatial data formats that presents a single raster abstract data model and single vector abstract data model to the calling application for all supported formats < https://gdal.org/>. This package is focussed on providing exactly and only what GDAL does, to enable developing further tools.
Parametric Bootstrap, Kenward-Roger and Satterthwaite Based Methods for Test in Mixed Models
Computes p-values based on (a) Satterthwaite or
Kenward-Rogers degree of freedom methods and (b) parametric bootstrap
for mixed effects models as implemented in the 'lme4'
package. Implements parametric bootstrap test for generalized linear
mixed models as implemented in 'lme4' and generalized linear
models. The package is documented in the paper by Halekoh and
Højsgaard, (2012,
Empirical Bayes Estimation and Inference
Kiefer-Wolfowitz maximum likelihood estimation for mixture models
and some other density estimation and regression methods based on convex
optimization. See Koenker and Gu (2017) REBayes: An R Package for Empirical
Bayes Mixture Methods, Journal of Statistical Software, 82, 1--26,
Tests in Linear Mixed Effects Models
Provides p-values in type I, II or III anova and summary tables for lmer model fits (cf. lme4) via Satterthwaite's degrees of freedom method. A Kenward-Roger method is also available via the pbkrtest package. Model selection methods include step, drop1 and anova-like tables for random effects (ranova). Methods for Least-Square means (LS-means) and tests of linear contrasts of fixed effects are also available.
Automated Grading of R Scripts
Tools for grading the coding style and documentation of R scripts. This is the R component of Roger the Omni Grader, an automated grading system for computer programming projects based on Unix shell scripts; see < https://gitlab.com/roger-project>. The package also provides an R interface to the shell scripts. Inspired by the lintr package.
Simple Key-Value Database
Implements a simple key-value style database where character string keys are associated with data values that are stored on the disk. A simple interface is provided for inserting, retrieving, and deleting data from the database. Utilities are provided that allow 'filehash' databases to be treated much like environments and lists are already used in R. These utilities are provided to encourage interactive and exploratory analysis on large datasets. Three different file formats for representing the database are currently available and new formats can easily be incorporated by third parties for use in the 'filehash' framework.
Comparative 'Phylogenetic' Analyses of Diversification
Contains a number of comparative 'phylogenetic' methods, mostly focusing on analysing diversification and character evolution. Contains implementations of 'BiSSE' (Binary State 'Speciation' and Extinction) and its unresolved tree extensions, 'MuSSE' (Multiple State 'Speciation' and Extinction), 'QuaSSE', 'GeoSSE', and 'BiSSE-ness' Other included methods include Markov models of discrete and continuous trait evolution and constant rate 'speciation' and extinction.