Found 7212 packages in 0.19 seconds
Spatial Generalised Linear Mixed Models for Areal Unit Data
Implements a class of univariate and multivariate spatial generalised linear mixed models for areal unit data, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation using a single or multiple Markov chains. The response variable can be binomial, Gaussian, multinomial, Poisson or zero-inflated Poisson (ZIP), and spatial autocorrelation is modelled by a set of random effects that are assigned a conditional autoregressive (CAR) prior distribution. A number of different models are available for univariate spatial data, including models with no random effects as well as random effects modelled by different types of CAR prior, including the BYM model (Besag et al., 1991,
Bayesian Variable Selection and Model Choice for Generalized Additive Mixed Models
Bayesian variable selection, model choice, and regularized estimation for (spatial) generalized additive mixed regression models via stochastic search variable selection with spike-and-slab priors.
Parallel Linear Mixed Model
Embarrassingly Parallel Linear Mixed Model calculations spread across local cores which repeat until convergence.
Some Algorithms for Mixed Models
This program can be used to fit Gaussian linear mixed models (LMM). Univariate and multivariate response models, multiple variance components, as well as, certain correlation and covariance structures are supported. In many occasions, the user can pick one of the several mixed model fitting algorithms, which are explained further in the details section. Some algorithms are specific to certain types of models (univariate or multivariate, diagonal or non-diagonal residual, one or multiple variance components, etc,...).
Bayesian Mixing Models in R
Creates and runs Bayesian mixing models to analyze biological tracer data (i.e. stable isotopes, fatty acids), which estimate the proportions of source (prey) contributions to a mixture (consumer). 'MixSIAR' is not one model, but a framework that allows a user to create a mixing model based on their data structure and research questions, via options for fixed/ random effects, source data types, priors, and error terms. 'MixSIAR' incorporates several years of advances since 'MixSIR' and 'SIAR'.
Kernel Ridge Mixed Model
Solves kernel ridge regression, within the the mixed model framework, for the linear, polynomial, Gaussian, Laplacian and ANOVA kernels. The model components (i.e. fixed and random effects) and variance parameters are estimated using the expectation-maximization (EM) algorithm. All the estimated components and parameters, e.g. BLUP of dual variables and BLUP of random predictor effects for the linear kernel (also known as RR-BLUP), are available. The kernel ridge mixed model (KRMM) is described in Jacquin L, Cao T-V and Ahmadi N (2016) A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice. Front. Genet. 7:145.
A Stable Isotope Mixing Model
Fits Stable Isotope Mixing Models (SIMMs) and is meant as a longer term replacement to the previous widely-used package SIAR. SIMMs are used to infer dietary proportions of organisms consuming various food sources from observations on the stable isotope values taken from the organisms' tissue samples. However SIMMs can also be used in other scenarios, such as in sediment mixing or the composition of fatty acids. The main functions are simmr_load() and simmr_mcmc(). The two vignettes contain a quick start and a full listing of all the features. The methods used are detailed in the papers Parnell et al 2010
Latent Factor Mixed Models
Fast and accurate inference of
gene-environment associations (GEA) in genome-wide studies
(Caye et al., 2019,
Stable Isotope Mixing Model
Estimates diet contributions from isotopic sources using JAGS. Includes estimation of concentration dependence and measurement error.
Bayesian Linear Mixed-Effects Models
Maximum a posteriori estimation for linear and generalized linear mixed-effects models in a Bayesian setting, implementing the methods of Chung, et al. (2013)