Found 7996 packages in 0.01 seconds
Tidying Methods for Mixed Models
Convert fitted objects from various R mixed-model packages into tidy data frames along the lines of the 'broom' package. The package provides three S3 generics for each model: tidy(), which summarizes a model's statistical findings such as coefficients of a regression; augment(), which adds columns to the original data such as predictions, residuals and cluster assignments; and glance(), which provides a one-row summary of model-level statistics.
A Stable Isotope Mixing Model
Fits Stable Isotope Mixing Models (SIMMs) and is meant as a longer term replacement to the previous widely-used package SIAR. SIMMs are used to infer dietary proportions of organisms consuming various food sources from observations on the stable isotope values taken from the organisms' tissue samples. However SIMMs can also be used in other scenarios, such as in sediment mixing or the composition of fatty acids. The main functions are simmr_load() and simmr_mcmc(). The two vignettes contain a quick start and a full listing of all the features. The methods used are detailed in the papers Parnell et al 2010
Mixed Models for Repeated Measures
Mixed models for repeated measures (MMRM) are a popular
choice for analyzing longitudinal continuous outcomes in randomized
clinical trials and beyond; see Cnaan, Laird and Slasor (1997)
Latent Factor Mixed Models
Fast and accurate inference of
gene-environment associations (GEA) in genome-wide studies
(Caye et al., 2019,
Stable Isotope Mixing Model
Estimates diet contributions from isotopic sources using JAGS. Includes estimation of concentration dependence and measurement error.
Graphical Markov Models with Mixed Graphs
Provides functions for defining mixed graphs containing three types of edges, directed, undirected and bi-directed, with possibly multiple edges. These graphs are useful because they capture fundamental independence structures in multivariate distributions and in the induced distributions after marginalization and conditioning. The package is especially concerned with Gaussian graphical models for (i) ML estimation for directed acyclic graphs, undirected and bi-directed graphs and ancestral graph models (ii) testing several conditional independencies (iii) checking global identification of DAG Gaussian models with one latent variable (iv) testing Markov equivalences and generating Markov equivalent graphs of specific types.
GEMMA Multivariate Linear Mixed Model
Fits a multivariate linear mixed effects model that uses a polygenic term, after Zhou & Stephens (2014) (< https://www.nature.com/articles/nmeth.2848>). Of particular interest is the estimation of variance components with restricted maximum likelihood (REML) methods. Genome-wide efficient mixed-model association (GEMMA), as implemented in the package 'gemma2', uses an expectation-maximization algorithm for variance components inference for use in quantitative trait locus studies.
Various Linear Mixed Model Analyses
This package offers three important components: (1) to construct a use-defined linear mixed model, (2) to employ one of linear mixed model approaches: minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1971) for variance component estimation and random effect prediction; and (3) to employ a jackknife resampling technique to conduct various statistical tests. In addition, this package provides the function for model or data evaluations.This R package offers fast computations for large data sets analyses for various irregular data structures.
Generalized Additive Latent and Mixed Models
Estimates generalized additive latent and
mixed models using maximum marginal likelihood,
as defined in Sorensen et al. (2023)
Generalised Linear Mixed Models in R
Specification, analysis, simulation, and fitting of generalised linear mixed models. Includes Markov Chain Monte Carlo Maximum likelihood model fitting for a range of models, non-linear fixed effect specifications, a wide range of flexible covariance functions that can be combined arbitrarily, robust and bias-corrected standard error estimation, power calculation, data simulation, and more.