Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2938 packages in 0.19 seconds

tsfeatures — by Rob Hyndman, 2 years ago

Time Series Feature Extraction

Methods for extracting various features from time series data. The features provided are those from Hyndman, Wang and Laptev (2013) , Kang, Hyndman and Smith-Miles (2017) and from Fulcher, Little and Jones (2013) . Features include spectral entropy, autocorrelations, measures of the strength of seasonality and trend, and so on. Users can also define their own feature functions.

dtwclust — by Alexis Sarda, 7 months ago

Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance

Time series clustering along with optimized techniques related to the Dynamic Time Warping distance and its corresponding lower bounds. Implementations of partitional, hierarchical, fuzzy, k-Shape and TADPole clustering are available. Functionality can be easily extended with custom distance measures and centroid definitions. Implementations of DTW barycenter averaging, a distance based on global alignment kernels, and the soft-DTW distance and centroid routines are also provided. All included distance functions have custom loops optimized for the calculation of cross-distance matrices, including parallelization support. Several cluster validity indices are included.

modeltime — by Matt Dancho, 4 months ago

The Tidymodels Extension for Time Series Modeling

The time series forecasting framework for use with the 'tidymodels' ecosystem. Models include ARIMA, Exponential Smoothing, and additional time series models from the 'forecast' and 'prophet' packages. Refer to "Forecasting Principles & Practice, Second edition" (< https://otexts.com/fpp2/>). Refer to "Prophet: forecasting at scale" (< https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/>.).

tseriesChaos — by Antonio Fabio Di Narzo, 6 years ago

Analysis of Nonlinear Time Series

Routines for the analysis of nonlinear time series. This work is largely inspired by the TISEAN project, by Rainer Hegger, Holger Kantz and Thomas Schreiber: < http://www.mpipks-dresden.mpg.de/~tisean/>.

tsmethods — by Alexios Galanos, 5 months ago

Time Series Methods

Generic methods for use in a time series probabilistic framework, allowing for a common calling convention across packages. Additional methods for time series prediction ensembles and probabilistic plotting of predictions is included. A more detailed description is available at < https://www.nopredict.com/packages/tsmethods> which shows the currently implemented methods in the 'tsmodels' framework.

TSclust — by Pablo Montero Manso, 5 years ago

Time Series Clustering Utilities

A set of measures of dissimilarity between time series to perform time series clustering. Metrics based on raw data, on generating models and on the forecast behavior are implemented. Some additional utilities related to time series clustering are also provided, such as clustering algorithms and cluster evaluation metrics.

mFilter — by Mehmet Balcilar, 6 years ago

Miscellaneous Time Series Filters

The mFilter package implements several time series filters useful for smoothing and extracting trend and cyclical components of a time series. The routines are commonly used in economics and finance, however they should also be interest to other areas. Currently, Christiano-Fitzgerald, Baxter-King, Hodrick-Prescott, Butterworth, and trigonometric regression filters are included in the package.

simts — by Stéphane Guerrier, 2 years ago

Time Series Analysis Tools

A system contains easy-to-use tools as a support for time series analysis courses. In particular, it incorporates a technique called Generalized Method of Wavelet Moments (GMWM) as well as its robust implementation for fast and robust parameter estimation of time series models which is described, for example, in Guerrier et al. (2013) . More details can also be found in the paper linked to via the URL below.

tsModel — by Roger D. Peng, 8 months ago

Time Series Modeling for Air Pollution and Health

Tools for specifying time series regression models.

tsDyn — by Matthieu Stigler, 4 months ago

Nonlinear Time Series Models with Regime Switching

Implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).