Found 3219 packages in 0.02 seconds
Functional Time Series Analysis
Functions for visualizing, modeling, forecasting and hypothesis testing of functional time series.
Nonlinear Time Series Analysis
Functions for nonlinear time series analysis. This package permits the computation of the most-used nonlinear statistics/algorithms including generalized correlation dimension, information dimension, largest Lyapunov exponent, sample entropy and Recurrence Quantification Analysis (RQA), among others. Basic routines for surrogate data testing are also included. Part of this work was based on the book "Nonlinear time series analysis" by Holger Kantz and Thomas Schreiber (ISBN: 9780521529020).
Time Series Feature Extraction
Methods for extracting various features from time series data. The features provided are those from Hyndman, Wang and Laptev (2013)
The Tidymodels Extension for Time Series Modeling
The time series forecasting framework for use with the 'tidymodels' ecosystem. Models include ARIMA, Exponential Smoothing, and additional time series models from the 'forecast' and 'prophet' packages. Refer to "Forecasting Principles & Practice, Second edition" (< https://otexts.com/fpp2/>). Refer to "Prophet: forecasting at scale" (< https://research.facebook.com/blog/2017/02/prophet-forecasting-at-scale/>.).
Time Series Exploration, Modelling and Forecasting
Includes: (i) tests and visualisations that can help the modeller explore time series components and perform decomposition; (ii) modelling shortcuts, such as functions to construct lagmatrices and seasonal dummy variables of various forms; (iii) an implementation of the Theta method; (iv) tools to facilitate the design of the forecasting process, such as ABC-XYZ analyses; and (v) "quality of life" functions, such as treating time series for trailing and leading values.
Time Series Clustering Along with Optimizations for the Dynamic Time Warping Distance
Time series clustering along with optimized techniques related to the Dynamic Time Warping distance and its corresponding lower bounds. Implementations of partitional, hierarchical, fuzzy, k-Shape and TADPole clustering are available. Functionality can be easily extended with custom distance measures and centroid definitions. Implementations of DTW barycenter averaging, a distance based on global alignment kernels, and the soft-DTW distance and centroid routines are also provided. All included distance functions have custom loops optimized for the calculation of cross-distance matrices, including parallelization support. Several cluster validity indices are included.
Nonlinear Time Series Models with Regime Switching
Implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).
Archaeological Time Series
A toolkit for archaeological time series and time intervals.
This package provides a system of classes and methods to represent and
work with archaeological time series and time intervals. Dates are
represented as "rata die" and can be converted to (virtually) any
calendar defined by Reingold and Dershowitz (2018)
Distance Measures for Time Series Data
A set of commonly used distance measures and some additional functions which, although initially not designed for this purpose, can be used to measure the dissimilarity between time series. These measures can be used to perform clustering, classification or other data mining tasks which require the definition of a distance measure between time series. U. Mori, A. Mendiburu and J.A. Lozano (2016),
Locally Stationary Time Series
A set of functions that allow stationary analysis and locally stationary time series analysis.