Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 89 packages in 0.05 seconds

strucchange — by Achim Zeileis, 3 months ago

Testing, Monitoring, and Dating Structural Changes

Testing, monitoring and dating structural changes in (linear) regression models. strucchange features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g., CUSUM, MOSUM, recursive/moving estimates) and F statistics, respectively. It is possible to monitor incoming data online using fluctuation processes. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals. Emphasis is always given to methods for visualizing the data.

psychotools — by Achim Zeileis, 6 months ago

Psychometric Modeling Infrastructure

Infrastructure for psychometric modeling such as data classes (for item response data and paired comparisons), basic model fitting functions (for Bradley-Terry, Rasch, parametric logistic IRT, generalized partial credit, rating scale, multinomial processing tree models), extractor functions for different types of parameters (item, person, threshold, discrimination, guessing, upper asymptotes), unified inference and visualizations, and various datasets for illustration. Intended as a common lightweight and efficient toolbox for psychometric modeling and a common building block for fitting psychometric mixture models in package "psychomix" and trees based on psychometric models in package "psychotree".

betareg — by Achim Zeileis, 2 months ago

Beta Regression

Beta regression for modeling beta-distributed dependent variables on the open unit interval (0, 1), e.g., rates and proportions, see Cribari-Neto and Zeileis (2010) . Moreover, extended-support beta regression models can accommodate dependent variables with boundary observations at 0 and/or 1. For the classical beta regression model, alternative specifications are provided: Bias-corrected and bias-reduced estimation, finite mixture models, and recursive partitioning for beta regression, see GrĂ¼n, Kosmidis, and Zeileis (2012) .

plm — by Kevin Tappe, 8 months ago

Linear Models for Panel Data

A set of estimators for models and (robust) covariance matrices, and tests for panel data econometrics, including within/fixed effects, random effects, between, first-difference, nested random effects as well as instrumental-variable (IV) and Hausman-Taylor-style models, panel generalized method of moments (GMM) and general FGLS models, mean groups (MG), demeaned MG, and common correlated effects (CCEMG) and pooled (CCEP) estimators with common factors, variable coefficients and limited dependent variables models. Test functions include model specification, serial correlation, cross-sectional dependence, panel unit root and panel Granger (non-)causality. Typical references are general econometrics text books such as Baltagi (2021), Econometric Analysis of Panel Data (), Hsiao (2014), Analysis of Panel Data (), and Croissant and Millo (2018), Panel Data Econometrics with R ().

pscl — by Simon Jackman, 10 months ago

Political Science Computational Laboratory

Bayesian analysis of item-response theory (IRT) models, roll call analysis; computing highest density regions; maximum likelihood estimation of zero-inflated and hurdle models for count data; goodness-of-fit measures for GLMs; data sets used in writing and teaching; seats-votes curves.

coin — by Torsten Hothorn, a year ago

Conditional Inference Procedures in a Permutation Test Framework

Conditional inference procedures for the general independence problem including two-sample, K-sample (non-parametric ANOVA), correlation, censored, ordered and multivariate problems described in .

gamlss — by Mikis Stasinopoulos, 8 months ago

Generalized Additive Models for Location Scale and Shape

Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopoulos (2005), . The models use a distributional regression approach where all the parameters of the conditional distribution of the response variable are modelled using explanatory variables.

party — by Torsten Hothorn, 3 months ago

A Laboratory for Recursive Partytioning

A computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available. The methods are described in Hothorn et al. (2006) , Zeileis et al. (2008) and Strobl et al. (2007) .

car — by John Fox, 2 months ago

Companion to Applied Regression

Functions to Accompany J. Fox and S. Weisberg, An R Companion to Applied Regression, Third Edition, Sage, 2019.

truncreg — by Yves Croissant, 6 years ago

Truncated Gaussian Regression Models

Estimation of models for truncated Gaussian variables by maximum likelihood.