Found 2230 packages in 0.02 seconds
Unified Multiple Testing Procedures
Designed to ease the application and comparison of multiple hypothesis testing procedures for FWER, gFWER, FDR and FDX. Methods are standardized and usable by the accompanying 'mutossGUI'.
Hacks for 'ggplot2'
A 'ggplot2' extension that does a variety of little helpful things. The package extends 'ggplot2' facets through customisation, by setting individual scales per panel, resizing panels and providing nested facets. Also allows multiple colour and fill scales per plot. Also hosts a smaller collection of stats, geoms and axis guides.
Regression Models for Ordinal Data
Implementation of cumulative link (mixed) models also known as ordered regression models, proportional odds models, proportional hazards models for grouped survival times and ordered logit/probit/... models. Estimation is via maximum likelihood and mixed models are fitted with the Laplace approximation and adaptive Gauss-Hermite quadrature. Multiple random effect terms are allowed and they may be nested, crossed or partially nested/crossed. Restrictions of symmetry and equidistance can be imposed on the thresholds (cut-points/intercepts). Standard model methods are available (summary, anova, drop-methods, step, confint, predict etc.) in addition to profile methods and slice methods for visualizing the likelihood function and checking convergence.
Parallel Distance Matrix Computation using Multiple Threads
A fast parallelized alternative to R's native 'dist' function to calculate distance matrices for continuous, binary, and multi-dimensional input matrices, which supports a broad variety of 41 predefined distance functions from the 'stats', 'proxy' and 'dtw' R packages, as well as user- defined functions written in C++. For ease of use, the 'parDist' function extends the signature of the 'dist' function and uses the same parameter naming conventions as distance methods of existing R packages. The package is mainly implemented in C++ and leverages the 'RcppParallel' package to parallelize the distance computations with the help of the 'TinyThread' library. Furthermore, the 'Armadillo' linear algebra library is used for optimized matrix operations during distance calculations. The curiously recurring template pattern (CRTP) technique is applied to avoid virtual functions, which improves the Dynamic Time Warping calculations while the implementation stays flexible enough to support different DTW step patterns and normalization methods.
Create 'Formattable' Data Structures
Provides functions to create formattable vectors and data frames. 'Formattable' vectors are printed with text formatting, and formattable data frames are printed with multiple types of formatting in HTML to improve the readability of data presented in tabular form rendered in web pages.
Non-Parametric Multiple Change-Point Analysis of Multivariate Data
Implements various procedures for finding
multiple change-points from Matteson D. et al (2013)
Fast Fixed-Effects Estimations
Fast and user-friendly estimation of econometric models with multiple fixed-effects. Includes ordinary least squares (OLS), generalized linear models (GLM) and the negative binomial. The core of the package is based on optimized parallel C++ code, scaling especially well for large data sets. The method to obtain the fixed-effects coefficients is based on Berge (2018) < https://github.com/lrberge/fixest/blob/master/_DOCS/FENmlm_paper.pdf>. Further provides tools to export and view the results of several estimations with intuitive design to cluster the standard-errors.
Apply Functions to Multiple Multidimensional Arrays or Vectors
The base apply function and its variants, as well as the related functions in the 'plyr' package, typically apply user-defined functions to a single argument (or a list of vectorized arguments in the case of mapply). The 'multiApply' package extends this paradigm with its only function, Apply, which efficiently applies functions taking one or a list of multiple unidimensional or multidimensional arrays (or combinations thereof) as input. The input arrays can have different numbers of dimensions as well as different dimension lengths, and the applied function can return one or a list of unidimensional or multidimensional arrays as output. This saves development time by preventing the R user from writing often error-prone and memory-inefficient loops dealing with multiple complex arrays. Also, a remarkable feature of Apply is the transparent use of multi-core through its parameter 'ncores'. In contrast to the base apply function, this package suggests the use of 'target dimensions' as opposite to the 'margins' for specifying the dimensions relevant to the function to be applied.
Shape Constrained Additive Models
Generalized additive models under shape
constraints on the component functions of the linear predictor.
Models can include multiple shape-constrained (univariate
and bivariate) and unconstrained terms. Routines of the
package 'mgcv' are used to set up the model matrix, print,
and plot the results. Multiple smoothing parameter
estimation by the Generalized Cross Validation or similar.
See Pya and Wood (2015)
Sensitivity Analysis for Observational Studies with Multiple Outcomes
Sensitivity analysis for multiple outcomes in observational studies. For instance, all linear combinations of several outcomes may be explored using Scheffe projections in the comparison() function; see Rosenbaum (2016, Annals of Applied Statistics)