Processing and analysis of field collected or simulated sprinkler system catch data (depths) to characterize irrigation uniformity and efficiency using standard and other measures. Standard measures include the Christiansen coefficient of uniformity (CU) as found in Christiansen, J.E.(1942, ISBN:0138779295, "Irrigation by Sprinkling"); and distribution uniformity (DU), potential efficiency of the low quarter (PELQ), and application efficiency of the low quarter (AELQ) that are implementations of measures of the same notation in Keller, J. and Merriam, J.L. (1978) "Farm Irrigation System Evaluation: A Guide for Management" < https://pdf.usaid.gov/pdf_docs/PNAAG745.pdf>. spreval::DU.lh is similar to spreval::DU but is the distribution uniformity of the low half instead of low quarter as in DU. spreval::PELQT is a version of spreval::PELQ adapted for traveling systems instead of lateral move or solid-set sprinkler systems. The function spreval::eff is analogous to the method used to compute application efficiency for furrow irrigation presented in Walker, W. and Skogerboe, G.V. (1987,ISBN:0138779295, "Surface Irrigation: Theory and Practice"),that uses piecewise integration of infiltrated depth compared against soil-moisture deficit (SMD), when the argument "target" is set equal to SMD. The other functions contained in the package provide graphical representation of sprinkler system uniformity, and other standard univariate parametric and non-parametric statistical measures as applied to sprinkler system catch depths. A sample data set of field test data spreval::catchcan (catch depths) is provided and is used in examples and vignettes.