Found 1844 packages in 0.03 seconds
Innovative Complex Split Procedures in Random Forests Through Candidate Split Sampling
Implementation of three methods based on the diversity forest (DF) algorithm
(Hornung, 2022,
A Laboratory for Recursive Partytioning
A computational toolbox for recursive partitioning.
The core of the package is ctree(), an implementation of
conditional inference trees which embed tree-structured
regression models into a well defined theory of conditional
inference procedures. This non-parametric class of regression
trees is applicable to all kinds of regression problems, including
nominal, ordinal, numeric, censored as well as multivariate response
variables and arbitrary measurement scales of the covariates.
Based on conditional inference trees, cforest() provides an
implementation of Breiman's random forests. The function mob()
implements an algorithm for recursive partitioning based on
parametric models (e.g. linear models, GLMs or survival
regression) employing parameter instability tests for split
selection. Extensible functionality for visualizing tree-structured
regression models is available. The methods are described in
Hothorn et al. (2006)
R Interface for the 'H2O' Scalable Machine Learning Platform
R interface for 'H2O', the scalable open source machine learning platform that offers parallelized implementations of many supervised and unsupervised machine learning algorithms such as Generalized Linear Models (GLM), Gradient Boosting Machines (including XGBoost), Random Forests, Deep Neural Networks (Deep Learning), Stacked Ensembles, Naive Bayes, Generalized Additive Models (GAM), ANOVA GLM, Cox Proportional Hazards, K-Means, PCA, ModelSelection, Word2Vec, as well as a fully automatic machine learning algorithm (H2O AutoML).
Nested Cross-Validation to Compare Cox-PH, Cox-Lasso, Survival Random Forests
Performs repeated nested cross-validation for Cox Proportionate Hazards, Cox Lasso, Survival Random Forest, and their ensemble. Returns internally validated concordance index, time-dependent area under the curve, Brier score, calibration slope, and statistical testing of non-linear ensemble outperforming the baseline Cox model. In this, it helps researchers to quantify the gain of using a more complex survival model, or justify its redundancy. Equally, it shows the performance value of the non-linear and interaction terms, and may highlight the need of further feature transformation. Further details can be found in Shamsutdinova, Stamate, Roberts, & Stahl (2022) "Combining Cox Model and Tree-Based Algorithms to Boost Performance and Preserve Interpretability for Health Outcomes"
Transformation Trees and Forests
Recursive partytioning of transformation models with
corresponding random forest for conditional transformation models
as described in 'Transformation Forests' (Hothorn and Zeileis, 2021,
Model Wrappers for Tree-Based Models
Bindings for additional tree-based model engines for use with
the 'parsnip' package. Models include gradient boosted decision trees
with 'LightGBM' (Ke et al, 2017.), conditional inference trees and
conditional random forests with 'partykit' (Hothorn and Zeileis, 2015.
and Hothorn et al, 2006.
Nearest Neighbor Observation Imputation and Evaluation Tools
Performs nearest neighbor-based imputation using one or more alternative approaches to processing multivariate data. These include methods based on canonical correlation: analysis, canonical correspondence analysis, and a multivariate adaptation of the random forest classification and regression techniques of Leo Breiman and Adele Cutler. Additional methods are also offered. The package includes functions for comparing the results from running alternative techniques, detecting imputation targets that are notably distant from reference observations, detecting and correcting for bias, bootstrapping and building ensemble imputations, and mapping results.
Fast Imputation of Missing Values
Alternative implementation of the beautiful 'MissForest'
algorithm used to impute mixed-type data sets by chaining random
forests, introduced by Stekhoven, D.J. and Buehlmann, P. (2012)
General Package for Meta-Analysis
User-friendly general package providing standard methods for meta-analysis and supporting Schwarzer, Carpenter, and Rücker
A Modified Random Survival Forest Algorithm
Implements a modification to the Random Survival Forests algorithm for obtaining variable importance in high dimensional datasets. The proposed algorithm is appropriate for settings in which a silent event is observed through sequentially administered, error-prone self-reports or laboratory based diagnostic tests. The modified algorithm incorporates a formal likelihood framework that accommodates sequentially administered, error-prone self-reports or laboratory based diagnostic tests. The original Random Survival Forests algorithm is modified by the introduction of a new splitting criterion based on a likelihood ratio test statistic.