Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2241 packages in 0.01 seconds

LDAvis — by Carson Sievert, 10 years ago

Interactive Visualization of Topic Models

Tools to create an interactive web-based visualization of a topic model that has been fit to a corpus of text data using Latent Dirichlet Allocation (LDA). Given the estimated parameters of the topic model, it computes various summary statistics as input to an interactive visualization built with D3.js that is accessed via a browser. The goal is to help users interpret the topics in their LDA topic model.

ggmulti — by Zehao Xu, 2 months ago

High Dimensional Data Visualization

It provides materials (i.e. 'serial axes' objects, Andrew's plot, various glyphs for scatter plot) to visualize high dimensional data.

Mercator — by Kevin R. Coombes, 7 months ago

Clustering and Visualizing Distance Matrices

Defines the classes used to explore, cluster and visualize distance matrices, especially those arising from binary data. See Abrams and colleagues, 2021, .

likert — by Jason Bryer, 4 months ago

Analysis and Visualization Likert Items

An approach to analyzing Likert response items, with an emphasis on visualizations. The stacked bar plot is the preferred method for presenting Likert results. Tabular results are also implemented along with density plots to assist researchers in determining whether Likert responses can be used quantitatively instead of qualitatively. See the likert(), summary.likert(), and plot.likert() functions to get started.

waffle — by Bob Rudis, 2 years ago

Create Waffle Chart Visualizations

Square pie charts (a.k.a. waffle charts) can be used to communicate parts of a whole for categorical quantities. To emulate the percentage view of a pie chart, a 10x10 grid should be used with each square representing 1% of the total. Modern uses of waffle charts do not necessarily adhere to this rule and can be created with a grid of any rectangular shape. Best practices suggest keeping the number of categories small, just as should be done when creating pie charts. Tools are provided to create waffle charts as well as stitch them together, and to use glyphs for making isotype pictograms.

PairViz — by Catherine Hurley, 3 years ago

Visualization using Graph Traversal

Improving graphics by ameliorating order effects, using Eulerian tours and Hamiltonian decompositions of graphs. References for the methods presented here are C.B. Hurley and R.W. Oldford (2010) and C.B. Hurley and R.W. Oldford (2011) .

BAMMtools — by Pascal Title, a year ago

Analysis and Visualization of Macroevolutionary Dynamics on Phylogenetic Trees

Provides functions for analyzing and visualizing complex macroevolutionary dynamics on phylogenetic trees. It is a companion package to the command line program BAMM (Bayesian Analysis of Macroevolutionary Mixtures) and is entirely oriented towards the analysis, interpretation, and visualization of evolutionary rates. Functionality includes visualization of rate shifts on phylogenies, estimating evolutionary rates through time, comparing posterior distributions of evolutionary rates across clades, comparing diversification models using Bayes factors, and more.

rayshader — by Tyler Morgan-Wall, 2 years ago

Create Maps and Visualize Data in 2D and 3D

Uses a combination of raytracing and multiple hill shading methods to produce 2D and 3D data visualizations and maps. Includes water detection and layering functions, programmable color palette generation, several built-in textures for hill shading, 2D and 3D plotting options, a built-in path tracer, 'Wavefront' OBJ file export, and the ability to save 3D visualizations to a 3D printable format.

plotfunctions — by Jacolien van Rij, 6 years ago

Various Functions to Facilitate Visualization of Data and Analysis

When analyzing data, plots are a helpful tool for visualizing data and interpreting statistical models. This package provides a set of simple tools for building plots incrementally, starting with an empty plot region, and adding bars, data points, regression lines, error bars, gradient legends, density distributions in the margins, and even pictures. The package builds further on R graphics by simply combining functions and settings in order to reduce the amount of code to produce for the user. As a result, the package does not use formula input or special syntax, but can be used in combination with default R plot functions. Note: Most of the functions were part of the package 'itsadug', which is now split in two packages: 1. the package 'itsadug', which contains the core functions for visualizing and evaluating nonlinear regression models, and 2. the package 'plotfunctions', which contains more general plot functions.

GeneralizedUmatrix — by Michael Thrun, 10 months ago

Credible Visualization for Two-Dimensional Projections of Data

Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018] . This could lead to a misleading interpretation of the underlying structures [Thrun, 2018]. By means of the 3D topographic map the generalized Umatrix is able to depict errors of these two-dimensional scatter plots. The package is derived from the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) and the main algorithm called simplified self-organizing map for dimensionality reduction methods is published in .