Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 87 packages in 0.28 seconds

sfsmisc — by Martin Maechler, 15 days ago

Utilities from 'Seminar fuer Statistik' ETH Zurich

Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().

MPTinR — by Henrik Singmann, 3 years ago

Analyze Multinomial Processing Tree Models

Provides a user-friendly way for the analysis of multinomial processing tree (MPT) models (e.g., Riefer, D. M., and Batchelder, W. H. [1988]. Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339) for single and multiple datasets. The main functions perform model fitting and model selection. Model selection can be done using AIC, BIC, or the Fisher Information Approximation (FIA) a measure based on the Minimum Description Length (MDL) framework. The model and restrictions can be specified in external files or within an R script in an intuitive syntax or using the context-free language for MPTs. The 'classical' .EQN file format for model files is also supported. Besides MPTs, this package can fit a wide variety of other cognitive models such as SDT models (see fit.model). It also supports multicore fitting and FIA calculation (using the snowfall package), can generate or bootstrap data for simulations, and plot predicted versus observed data.

fddm — by Henrik Singmann, 5 months ago

Fast Implementation of the Diffusion Decision Model

Provides the probability density function (PDF), cumulative distribution function (CDF), the first-order and second-order partial derivatives of the PDF, and a fitting function for the diffusion decision model (DDM; e.g., Ratcliff & McKoon, 2008, ) with across-trial variability in the drift rate. Because the PDF, its partial derivatives, and the CDF of the DDM both contain an infinite sum, they need to be approximated. 'fddm' implements all published approximations (Navarro & Fuss, 2009, ; Gondan, Blurton, & Kesselmeier, 2014, ; Blurton, Kesselmeier, & Gondan, 2017, ; Hartmann & Klauer, 2021, ) plus new approximations. All approximations are implemented purely in 'C++' providing faster speed than existing packages.

holland — by Joerg-Henrik Heine, 3 years ago

Statistics for Holland's Theory of Vocational Choice

Offers a convenient way to compute parameters in the framework of the theory of vocational choice introduced by J.L. Holland, (1997). A comprehensive summary to this theory of vocational choice is given in Holland, J.L. (1997). Making vocational choices. A theory of vocational personalities and work environments. Lutz, FL: Psychological Assessment.

marima — by Henrik Spliid, 8 years ago

Multivariate ARIMA and ARIMA-X Analysis

Multivariate ARIMA and ARIMA-X estimation using Spliid's algorithm (marima()) and simulation (marima.sim()).

gratia — by Gavin L. Simpson, 5 months ago

Graceful 'ggplot'-Based Graphics and Other Functions for GAMs Fitted Using 'mgcv'

Graceful 'ggplot'-based graphics and utility functions for working with generalized additive models (GAMs) fitted using the 'mgcv' package. Provides a reimplementation of the plot() method for GAMs that 'mgcv' provides, as well as 'tidyverse' compatible representations of estimated smooths.

yaps — by Henrik Baktoft, 4 years ago

Track Estimation using YAPS (Yet Another Positioning Solver)

Estimate tracks of animals tagged with acoustic transmitters. 'yaps' was introduced in 2017 as a transparent open-source tool to estimate positions of fish (and other aquatic animals) tagged with acoustic transmitters. Based on registrations of acoustic transmitters on hydrophones positioned in a fixed array, 'yaps' enables users to synchronize the collected data (i.e. correcting for drift in the internal clocks of the hydrophones/receivers) and subsequently to estimate tracks of the tagged animals. The paper introducing 'yaps' is available in open access at Baktoft, Gjelland, Økland & Thygesen (2017) . Also check out our cookbook with a completely worked through example at Baktoft, Gjelland, Økland, Rehage, Rodemann, Corujo, Viadero & Thygesen (2019) . Additional tutorials will eventually make their way onto the project website at < https://baktoft.github.io/yaps/>.

convertid — by Vidal Fey, a year ago

Convert Gene IDs Between Each Other and Fetch Annotations from Biomart

Gene Symbols or Ensembl Gene IDs are converted using the Bimap interface in 'AnnotationDbi' in convertId2() but that function is only provided as fallback mechanism for the most common use cases in data analysis. The main function in the package is convert.bm() which queries BioMart using the full capacity of the API provided through the 'biomaRt' package. Presets and defaults are provided for convenience but all "marts", "filters" and "attributes" can be set by the user. Function convert.alias() converts Gene Symbols to Aliases and vice versa and function likely_symbol() attempts to determine the most likely current Gene Symbol.

pairwise — by Joerg-Henrik Heine, 2 years ago

Rasch Model Parameters by Pairwise Algorithm

Performs the explicit calculation -- not estimation! -- of the Rasch item parameters for dichotomous and polytomous item responses, using a pairwise comparison approach. Person parameters (WLE) are calculated according to Warm's weighted likelihood approach.

AutoPipe — by Karam Daka, 6 years ago

Automated Transcriptome Classifier Pipeline: Comprehensive Transcriptome Analysis

An unsupervised fully-automated pipeline for transcriptome analysis or a supervised option to identify characteristic genes from predefined subclasses. We rely on the 'pamr' < http://www.bioconductor.org/packages//2.7/bioc/html/pamr.html> clustering algorithm to cluster the Data and then draw a heatmap of the clusters with the most significant genes and the least significant genes according to the 'pamr' algorithm. This way we get easy to grasp heatmaps that show us for each cluster which are the clusters most defining genes.