Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2057 packages in 0.02 seconds

nloptr — by Aymeric Stamm, 17 days ago

R Interface to NLopt

Solve optimization problems using an R interface to NLopt. NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different free optimization routines available online as well as original implementations of various other algorithms. See < https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/> for more information on the available algorithms. Building from included sources requires 'CMake'. On Linux and 'macOS', if a suitable system build of NLopt (2.7.0 or later) is found, it is used; otherwise, it is built from included sources via 'CMake'. On Windows, NLopt is obtained through 'rwinlib' for 'R <= 4.1.x' or grabbed from the appropriate toolchain for 'R >= 4.2.0'.

glmnet — by Trevor Hastie, 2 years ago

Lasso and Elastic-Net Regularized Generalized Linear Models

Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression, Cox model, multiple-response Gaussian, and the grouped multinomial regression; see and . There are two new and important additions. The family argument can be a GLM family object, which opens the door to any programmed family (). This comes with a modest computational cost, so when the built-in families suffice, they should be used instead. The other novelty is the relax option, which refits each of the active sets in the path unpenalized. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the papers cited.

mitools — by Thomas Lumley, 6 years ago

Tools for Multiple Imputation of Missing Data

Tools to perform analyses and combine results from multiple-imputation datasets.

randomizr — by Alexander Coppock, 2 years ago

Easy-to-Use Tools for Common Forms of Random Assignment and Sampling

Generates random assignments for common experimental designs and random samples for common sampling designs.

ca — by Oleg Nenadic, 5 years ago

Simple, Multiple and Joint Correspondence Analysis

Computation and visualization of simple, multiple and joint correspondence analysis.

autoFC — by Mengtong Li, 21 days ago

Automatic Construction of Forced-Choice Tests

Forced-choice (FC) response has gained increasing popularity and interest for its resistance to faking when well-designed (Cao & Drasgow, 2019 ). To established well-designed FC scales, typically each item within a block should measure different trait and have similar level of social desirability (Zhang et al., 2020 ). Recent study also suggests the importance of high inter-item agreement of social desirability between items within a block (Pavlov et al., 2021 ). In addition to this, FC developers may also need to maximize factor loading differences (Brown & Maydeu-Olivares, 2011 ) or minimize item location differences (Cao & Drasgow, 2019 ) depending on scoring models. Decision of which items should be assigned to the same block, termed item pairing, is thus critical to the quality of an FC test. This pairing process is essentially an optimization process which is currently carried out manually. However, given that we often need to simultaneously meet multiple objectives, manual pairing becomes impractical or even not feasible once the number of latent traits and/or number of items per trait are relatively large. To address these problems, autoFC is developed as a practical tool for facilitating the automatic construction of FC tests (Li et al., 2022 ), essentially exempting users from the burden of manual item pairing and reducing the computational costs and biases induced by simple ranking methods. Given characteristics of each item (and item responses), FC measures can be constructed either automatically based on user-defined pairing criteria and weights, or based on exact specifications of each block (i.e., blueprint; see Li et al., 2024 ). Users can also generate simulated responses based on the Thurstonian Item Response Theory model (Brown & Maydeu-Olivares, 2011 ) and predict trait scores of simulated/actual respondents based on an estimated model.

factoextra — by Alboukadel Kassambara, 5 years ago

Extract and Visualize the Results of Multivariate Data Analyses

Provides some easy-to-use functions to extract and visualize the output of multivariate data analyses, including 'PCA' (Principal Component Analysis), 'CA' (Correspondence Analysis), 'MCA' (Multiple Correspondence Analysis), 'FAMD' (Factor Analysis of Mixed Data), 'MFA' (Multiple Factor Analysis) and 'HMFA' (Hierarchical Multiple Factor Analysis) functions from different R packages. It contains also functions for simplifying some clustering analysis steps and provides 'ggplot2' - based elegant data visualization.

config — by Andrie de Vries, 2 years ago

Manage Environment Specific Configuration Values

Manage configuration values across multiple environments (e.g. development, test, production). Read values using a function that determines the current environment and returns the appropriate value.

FactoMineR — by Francois Husson, a year ago

Multivariate Exploratory Data Analysis and Data Mining

Exploratory data analysis methods to summarize, visualize and describe datasets. The main principal component methods are available, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, Multiple Factor Analysis when variables are structured in groups, etc. and hierarchical cluster analysis. F. Husson, S. Le and J. Pages (2017).

mgcv — by Simon Wood, 15 hours ago

Mixed GAM Computation Vehicle with Automatic Smoothness Estimation

Generalized additive (mixed) models, some of their extensions and other generalized ridge regression with multiple smoothing parameter estimation by (Restricted) Marginal Likelihood, Generalized Cross Validation and similar, or using iterated nested Laplace approximation for fully Bayesian inference. See Wood (2017) for an overview. Includes a gam() function, a wide variety of smoothers, 'JAGS' support and distributions beyond the exponential family.