Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2573 packages in 0.01 seconds

mlexperiments — by Lorenz A. Kapsner, 2 months ago

Machine Learning Experiments

Provides 'R6' objects to perform parallelized hyperparameter optimization and cross-validation. Hyperparameter optimization can be performed with Bayesian optimization (via 'ParBayesianOptimization' < https://cran.r-project.org/package=ParBayesianOptimization>) and grid search. The optimized hyperparameters can be validated using k-fold cross-validation. Alternatively, hyperparameter optimization and validation can be performed with nested cross-validation. While 'mlexperiments' focuses on core wrappers for machine learning experiments, additional learner algorithms can be supplemented by inheriting from the provided learner base class.

BayesXsrc — by Nikolaus Umlauf, 2 months ago

Distribution of the 'BayesX' C++ Sources

'BayesX' performs Bayesian inference in structured additive regression (STAR) models. The R package BayesXsrc provides the 'BayesX' command line tool for easy installation. A convenient R interface is provided in package R2BayesX.

bhmbasket — by Stephan Wojciekowski, 3 years ago

Bayesian Hierarchical Models for Basket Trials

Provides functions for the evaluation of basket trial designs with binary endpoints. Operating characteristics of a basket trial design are assessed by simulating trial data according to scenarios, analyzing the data with Bayesian hierarchical models (BHMs), and assessing decision probabilities on stratum and trial-level based on Go / No-go decision making. The package is build for high flexibility regarding decision rules, number of interim analyses, number of strata, and recruitment. The BHMs proposed by Berry et al. (2013) and Neuenschwander et al. (2016) , as well as a model that combines both approaches are implemented. Functions are provided to implement Bayesian decision rules as for example proposed by Fisch et al. (2015) . In addition, posterior point estimates (mean/median) and credible intervals for response rates and some model parameters can be calculated. For simulated trial data, bias and mean squared errors of posterior point estimates for response rates can be provided.

RSE — by Youhua Chen, 6 years ago

Number of Newly Discovered Rare Species Estimation

A Bayesian-weighted estimator and two unweighted estimators are developed to estimate the number of newly found rare species in additional ecological samples. Among these methods, the Bayesian-weighted estimator and an unweighted (Chao-derived) estimator are of high accuracy and recommended for practical applications. Technical details of the proposed estimators have been well described in the following paper: Shen TJ, Chen YH (2018) A Bayesian weighted approach to predicting the number of newly discovered rare species. Conservation Biology, In press.

gammi — by Nathaniel E. Helwig, 3 months ago

Generalized Additive Mixed Model Interface

An interface for fitting generalized additive models (GAMs) and generalized additive mixed models (GAMMs) using the 'lme4' package as the computational engine, as described in Helwig (2024) . Supports default and formula methods for model specification, additive and tensor product splines for capturing nonlinear effects, and automatic determination of spline type based on the class of each predictor. Includes an S3 plot method for visualizing the (nonlinear) model terms, an S3 predict method for forming predictions from a fit model, and an S3 summary method for conducting significance testing using the Bayesian interpretation of a smoothing spline.

bcf — by Jared S. Murray, a year ago

Causal Inference using Bayesian Causal Forests

Causal inference for a binary treatment and continuous outcome using Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020) for additional information. This implementation relies on code originally accompanying Pratola et. al. (2013) .

cmce — by Matthew T. Pratola, 7 years ago

Computer Model Calibration for Deterministic and Stochastic Simulators

Implements the Bayesian calibration model described in Pratola and Chkrebtii (2018) for stochastic and deterministic simulators. Additive and multiplicative discrepancy models are currently supported. See < http://www.matthewpratola.com/software> for more information and examples.

pqrBayes — by Cen Wu, 25 days ago

Bayesian Penalized Quantile Regression

Bayesian regularized quantile regression utilizing sparse priors to impose exact sparsity leads to efficient Bayesian shrinkage estimation, variable selection and statistical inference. In this package, we have implemented robust Bayesian variable selection with spike-and-slab priors under high-dimensional linear regression models (Fan et al. (2024) and Ren et al. (2023) ), and regularized quantile varying coefficient models (Zhou et al.(2023) ). In particular, valid robust Bayesian inferences under both models in the presence of heavy-tailed errors can be validated on finite samples. Additional models including robust Bayesian group LASSO are also included. The Markov Chain Monte Carlo (MCMC) algorithms of the proposed and alternative models are implemented in C++.

cIRT — by James Joseph Balamuta, 3 years ago

Choice Item Response Theory

Jointly model the accuracy of cognitive responses and item choices within a Bayesian hierarchical framework as described by Culpepper and Balamuta (2015) . In addition, the package contains the datasets used within the analysis of the paper.

MLModelSelection — by Kuo-Jung Lee, 5 years ago

Model Selection in Multivariate Longitudinal Data Analysis

An efficient Gibbs sampling algorithm is developed for Bayesian multivariate longitudinal data analysis with the focus on selection of important elements in the generalized autoregressive matrix. It provides posterior samples and estimates of parameters. In addition, estimates of several information criteria such as Akaike information criterion (AIC), Bayesian information criterion (BIC), deviance information criterion (DIC) and prediction accuracy such as the marginal predictive likelihood (MPL) and the mean squared prediction error (MSPE) are provided for model selection.