Found 2629 packages in 0.06 seconds
Generalized Additive Mixed Model Analysis via Slice Sampling
Uses a slice sampling-based Markov chain Monte Carlo to
conduct Bayesian fitting and inference for generalized additive
mixed models. Generalized linear mixed models and generalized
additive models are also handled as special cases of generalized
additive mixed models. The methodology and software is described
in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand
Journal of Statistics, 60, 279-330
Isotopic Tracer Analysis Using MCMC
Implements Bayesian models to analyze data from tracer addition
experiments. The implemented method was originally described in the article
"A New Method to Reconstruct Quantitative Food Webs and Nutrient Flows from
Isotope Tracer Addition Experiments" by López-Sepulcre et al. (2020)
Bayesian Methods for Identifying the Most Harmful Medication Errors
Two distinct but related statistical approaches to the problem of identifying the combinations of medication error characteristics that are more likely to result in harm are implemented in this package: 1) a Bayesian hierarchical model with optimal Bayesian ranking on the log odds of harm, and 2) an empirical Bayes model that estimates the ratio of the observed count of harm to the count that would be expected if error characteristics and harm were independent. In addition, for the Bayesian hierarchical model, the package provides functions to assess the sensitivity of results to different specifications of the random effects distributions.
Machine Learning Experiments
Provides 'R6' objects to perform parallelized hyperparameter optimization and cross-validation. Hyperparameter optimization can be performed with Bayesian optimization (via 'ParBayesianOptimization' < https://cran.r-project.org/package=ParBayesianOptimization>) and grid search. The optimized hyperparameters can be validated using k-fold cross-validation. Alternatively, hyperparameter optimization and validation can be performed with nested cross-validation. While 'mlexperiments' focuses on core wrappers for machine learning experiments, additional learner algorithms can be supplemented by inheriting from the provided learner base class.
Distribution of the 'BayesX' C++ Sources
'BayesX' performs Bayesian inference in structured additive regression (STAR) models. The R package BayesXsrc provides the 'BayesX' command line tool for easy installation. A convenient R interface is provided in package R2BayesX.
Bayesian Hierarchical Models for Basket Trials
Provides functions for the evaluation of basket
trial designs with binary endpoints. Operating characteristics of a
basket trial design are assessed by simulating trial data according to
scenarios, analyzing the data with Bayesian hierarchical models (BHMs), and
assessing decision probabilities on stratum and trial-level based on Go / No-go decision making.
The package is build for high flexibility regarding decision rules,
number of interim analyses, number of strata, and recruitment.
The BHMs proposed by
Berry et al. (2013)
Number of Newly Discovered Rare Species Estimation
A Bayesian-weighted estimator and two unweighted estimators are developed to estimate the number of newly found rare species in additional ecological samples. Among these methods, the Bayesian-weighted estimator and an unweighted (Chao-derived) estimator are of high accuracy and recommended for practical applications. Technical details of the proposed estimators have been well described in the following paper: Shen TJ, Chen YH (2018) A Bayesian weighted approach to predicting the number of newly discovered rare species. Conservation Biology, In press.
Generalized Additive Mixed Model Interface
An interface for fitting generalized additive models (GAMs) and generalized additive mixed models (GAMMs) using the 'lme4' package as the computational engine, as described in Helwig (2024)
Causal Inference using Bayesian Causal Forests
Causal inference for a binary treatment and continuous outcome using Bayesian Causal Forests. See Hahn, Murray and Carvalho (2020)
Computer Model Calibration for Deterministic and Stochastic Simulators
Implements the Bayesian calibration model described
in Pratola and Chkrebtii (2018)