Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 62 packages in 0.03 seconds

prolsirm — by Jinwen Luo, 2 years ago

Procrustes Matching for Latent Space Item Response Model

Procrustes matching of the posterior samples of person and item latent positions from latent space item response models. The methods implemented in this package are based on work by Borg, I., Groenen, P. (1997, ISBN:978-0-387-94845-4), Jeon, M., Jin, I. H., Schweinberger, M., Baugh, S. (2021) , and Andrew, D. M., Kevin M. Q., Jong Hee Park. (2011) .

RiverLoad — by Veronica Nava, 3 years ago

Load Estimation of River Compounds with Different Methods

Implements several of the most popular load estimation procedures, including averaging methods, ratio estimators and regression methods. The package provides an easy-to-use tool to rapidly calculate the load for various compounds and to compare different methods. The package also supplies additional functions to easily organize and analyze the data.

bondAnalyst — by MaheshP Kumar, 3 years ago

Methods for Fixed-Income Valuation, Risk and Return

Bond Pricing and Fixed-Income Valuation of Selected Securities included here serve as a quick reference of Quantitative Methods for undergraduate courses on Fixed-Income and CFA Level I Readings on Fixed-Income Valuation, Risk and Return. CFA Institute ("CFA Program Curriculum 2020 Level I Volumes 1-6. (Vol. 5, pp. 107-151, pp. 237-299)", 2019, ISBN: 9781119593577). Barbara S. Petitt ("Fixed Income Analysis", 2019, ISBN: 9781119628132). Frank J. Fabozzi ("Handbook of Finance: Financial Markets and Instruments", 2008, ISBN: 9780470078143). Frank J. Fabozzi ("Fixed Income Analysis", 2007, ISBN: 9780470052211).

BINtools — by Ville Satopää, 3 years ago

Bayesian BIN (Bias, Information, Noise) Model of Forecasting

A recently proposed Bayesian BIN model disentangles the underlying processes that enable forecasters and forecasting methods to improve, decomposing forecasting accuracy into three components: bias, partial information, and noise. By describing the differences between two groups of forecasters, the model allows the user to carry out useful inference, such as calculating the posterior probabilities of the treatment reducing bias, diminishing noise, or increasing information. It also provides insight into how much tamping down bias and noise in judgment or enhancing the efficient extraction of valid information from the environment improves forecasting accuracy. This package provides easy access to the BIN model. For further information refer to the paper Ville A. Satopää, Marat Salikhov, Philip E. Tetlock, and Barbara Mellers (2021) "Bias, Information, Noise: The BIN Model of Forecasting" .

mdsOpt — by Andrzej Dudek, a year ago

Searching for Optimal MDS Procedure for Metric and Interval-Valued Data

Selecting the optimal multidimensional scaling (MDS) procedure for metric data via metric MDS (ratio, interval, mspline) and nonmetric MDS (ordinal). Selecting the optimal multidimensional scaling (MDS) procedure for interval-valued data via metric MDS (ratio, interval, mspline).Selecting the optimal multidimensional scaling procedure for interval-valued data by varying all combinations of normalization and optimization methods.Selecting the optimal MDS procedure for statistical data referring to the evaluation of tourist attractiveness of Lower Silesian counties. (Borg, I., Groenen, P.J.F., Mair, P. (2013) , Walesiak, M. (2016) , Walesiak, M. (2017) ).

reproducer — by Lech Madeyski, a year ago

Reproduce Statistical Analyses and Meta-Analyses

Includes data analysis and meta-analysis functions (e.g., to calculate effect sizes and 95% Confidence Intervals (CI) on Standardised Effect Sizes (d) for AB/BA cross-over repeated-measures experimental designs), data presentation functions (e.g., density curve overlaid on histogram),and the data sets analyzed in different research papers in software engineering (e.g., related to software defect prediction or multi- site experiment concerning the extent to which structured abstracts were clearer and more complete than conventional abstracts) to streamline reproducible research in software engineering.

harbinger — by Eduardo Ogasawara, 4 months ago

A Unified Time Series Event Detection Framework

By analyzing time series, it is possible to observe significant changes in the behavior of observations that frequently characterize events. Events present themselves as anomalies, change points, or motifs. In the literature, there are several methods for detecting events. However, searching for a suitable time series method is a complex task, especially considering that the nature of events is often unknown. This work presents Harbinger, a framework for integrating and analyzing event detection methods. Harbinger contains several state-of-the-art methods described in Salles et al. (2020) .

scicomptools — by Angel Chen, 5 months ago

Tools Developed by the NCEAS Scientific Computing Support Team

Set of tools to import, summarize, wrangle, and visualize data. These functions were originally written based on the needs of the various synthesis working groups that were supported by the National Center for Ecological Analysis and Synthesis (NCEAS). These tools are meant to be useful inside and outside of the context for which they were designed.

carcass — by Fraenzi Korner-Nievergelt, 2 years ago

Estimation of the Number of Fatalities from Carcass Searches

The number of bird or bat fatalities from collisions with buildings, towers or wind energy turbines can be estimated based on carcass searches and experimentally assessed carcass persistence times and searcher efficiency. Functions for estimating the probability that a bird or bat that died is found by a searcher are provided. Further functions calculate the posterior distribution of the number of fatalities based on the number of carcasses found and the estimated detection probability.

discAUC — by Jonathan E. Friedel, 6 months ago

Linear and Non-Linear AUC for Discounting Data

Area under the curve (AUC; Myerson et al., 2001) is a popular measure used in discounting research. Although the calculation of AUC is standardized, there are differences in AUC based on some assumptions. For example, Myerson et al. (2001) assumed that (with delay discounting data) a researcher would impute an indifference point at zero delay equal to the value of the larger, later outcome. However, this practice is not clearly followed. This imputed zero-delay indifference point plays an important role in log and ordinal versions of AUC. Ordinal and log versions of AUC are described by Borges et al. (2016). The package can calculate all three versions of AUC [and includes a new version: IHS(AUC)], impute indifference points when x = 0, calculate ordinal AUC in the case of Halton sampling of x-values, and account for probability discounting AUC.