Found 101 packages in 0.04 seconds
Vault Client for Secrets and Sensitive Data
Provides an interface to a 'HashiCorp' vault server over its http API (typically these are self-hosted; see < https://www.vaultproject.io>). This allows for secure storage and retrieval of secrets over a network, such as tokens, passwords and certificates. Authentication with vault is supported through several backends including user name/password and authentication via 'GitHub'.
Functions and Datasets Required for ST370 Class
Provides functions and datasets required for the ST 370 course at North Carolina State University.
Sample Size for SMART Designs in Non-Surgical Periodontal Trials
Sample size calculation to detect dynamic treatment regime (DTR) effects based on change in clinical attachment level (CAL) outcomes from a non-surgical chronic periodontitis treatments study. The experiment is performed under a Sequential Multiple Assignment Randomized Trial (SMART) design. The clustered tooth (sub-unit) level CAL outcomes are skewed, spatially-referenced, and non-randomly missing. The implemented algorithm is available in Xu et al. (2019+)
Nonlinear Regression for Agricultural Applications
Additional nonlinear regression functions using self-start (SS) algorithms. One of the functions is the Beta growth function proposed by Yin et al. (2003)
Cohen's D_p Computation with Confidence Intervals
Computing Cohen's d_p in any experimental designs (between-subject, within-subject, and single-group design). Cousineau (2022) < https://github.com/dcousin3/CohensdpLibrary>; Cohen (1969, ISBN: 0-8058-0283-5).
Advanced Processing and Chart Generation from activPAL Events Files
Contains functions to generate pre-defined summary statistics from activPAL
events files
Data sets from "Introductory Statistics for Engineering Experimentation"
Datasets from Nelson, Coffin and Copeland "Introductory Statistics for Engineering Experimentation" (Elsevier, 2003) with sample code.
Inferring Differentially Expressed Genes using Generalized Linear Mixed Models
Genes that are differentially expressed between two or more experimental conditions can be detected in RNA-Seq. A high biological variability may impact the discovery of these genes once it may be divergent between the fixed effects. However, this variability can be covered by the random effects. 'DEGRE' was designed to identify the differentially expressed genes considering fixed and random effects on individuals. These effects are identified earlier in the experimental design matrix. 'DEGRE' has the implementation of preprocessing procedures to clean the near zero gene reads in the count matrix, normalize by 'RLE' published in the 'DESeq2' package, 'Love et al. (2014)'
Downloading, Reading and Analyzing POF Microdata - Package in Development
Provides tools for downloading, reading and analyzing the POF, a household survey from Brazilian Institute of Geography and Statistics - IBGE. The data must be downloaded from the official website < https://www.ibge.gov.br/>. Further analysis must be made using package 'survey'.
Lightweight Reproducible Reporting
Order, create and store reports from R. By defining a lightweight interface around the inputs and outputs of an analysis, a lot of the repetitive work for reproducible research can be automated. We define a simple format for organising and describing work that facilitates collaborative reproducible research and acknowledges that all analyses are run multiple times over their lifespans.