Found 34 packages in 0.01 seconds
Prediction Model Pooling, Selection and Performance Evaluation Across Multiply Imputed Datasets
Pooling, backward and forward selection of linear, logistic and Cox regression models in
multiply imputed datasets. Backward and forward selection can be done
from the pooled model using Rubin's Rules (RR), the D1, D2, D3, D4 and
the median p-values method. This is also possible for Mixed models.
The models can contain continuous, dichotomous, categorical and restricted
cubic spline predictors and interaction terms between all these type of predictors.
The stability of the models can be evaluated using (cluster) bootstrapping. The package
further contains functions to pool model performance measures as ROC/AUC, Reclassification,
R-squared, scaled Brier score, H&L test and calibration plots for logistic regression models.
Internal validation can be done across multiply imputed datasets with cross-validation or
bootstrapping. The adjusted intercept after shrinkage of pooled regression coefficients
can be obtained. Backward and forward selection as part of internal validation is possible.
A function to externally validate logistic prediction models in multiple imputed
datasets is available and a function to compare models. For Cox models a strata variable
can be included.
Eekhout (2017)
Data and Statistical Analyses after Multiple Imputation
Statistical Analyses and Pooling after Multiple Imputation. A large variety
of repeated statistical analysis can be performed and finally pooled. Statistical analysis
that are available are, among others, Levene's test, Odds and Risk Ratios, One sample
proportions, difference between proportions and linear and logistic regression models.
Functions can also be used in combination with the Pipe operator.
More and more statistical analyses and pooling functions will be added over time.
Heymans (2007)
Self-Controlled Case Series
Execute the self-controlled case series (SCCS) design using observational data in the OMOP Common Data Model. Extracts all necessary data from the database and transforms it to the format required for SCCS. Age and season can be modeled using splines assuming constant hazard within calendar months. Event-dependent censoring of the observation period can be corrected for. Many exposures can be included at once (MSCCS), with regularization on all coefficients except for the exposure of interest. Includes diagnostics for all major assumptions of the SCCS.
Parentage Assignment using Bi-Allelic Genetic Markers
Can be used for paternity and maternity assignment and outperforms
conventional methods where closely related individuals occur in the pool of
possible parents. The method compares the genotypes of offspring with any
combination of potentials parents and scores the number of mismatches of these
individuals at bi-allelic genetic markers (e.g. Single Nucleotide Polymorphisms).
It elaborates on a prior exclusion method based on the Homozygous Opposite Test
(HOT; Huisman 2017
Synthesizing Causal Evidence in a Distributed Research Network
Routines for combining causal effect estimates and study diagnostics across multiple data sites in a distributed study, without sharing patient-level data. Allows for normal and non-normal approximations of the data-site likelihood of the effect parameter.
Cyclic Coordinate Descent for Logistic, Poisson and Survival Analysis
This model fitting tool incorporates cyclic coordinate descent and
majorization-minimization approaches to fit a variety of regression models
found in large-scale observational healthcare data. Implementations focus
on computational optimization and fine-scale parallelization to yield
efficient inference in massive datasets. Please see:
Suchard, Simpson, Zorych, Ryan and Madigan (2013)
Climate Window Analysis
Contains functions to detect and visualise periods of climate
sensitivity (climate windows) for a given biological response.
Please see van de Pol et al. (2016)
JAR Dependencies for the 'DatabaseConnector' Package
Provides external JAR dependencies for the 'DatabaseConnector' package.
Generating Features for a Cohort
An R interface for generating features for a cohort using data in the Common Data Model. Features can be constructed using default or custom made feature definitions. Furthermore it's possible to aggregate features and get the summary statistics.
Tools for Type S (Sign) and Type M (Magnitude) Errors
Provides tools for working with Type S (Sign) and
Type M (Magnitude) errors, as proposed in Gelman and Tuerlinckx (2000)