Found 90 packages in 0.01 seconds
Generalized Additive Models for Location Scale and Shape
Functions for fitting the Generalized Additive Models for Location Scale and Shape introduced by Rigby and Stasinopoulos (2005),
A Laboratory for Recursive Partytioning
A computational toolbox for recursive partitioning.
The core of the package is ctree(), an implementation of
conditional inference trees which embed tree-structured
regression models into a well defined theory of conditional
inference procedures. This non-parametric class of regression
trees is applicable to all kinds of regression problems, including
nominal, ordinal, numeric, censored as well as multivariate response
variables and arbitrary measurement scales of the covariates.
Based on conditional inference trees, cforest() provides an
implementation of Breiman's random forests. The function mob()
implements an algorithm for recursive partitioning based on
parametric models (e.g. linear models, GLMs or survival
regression) employing parameter instability tests for split
selection. Extensible functionality for visualizing tree-structured
regression models is available. The methods are described in
Hothorn et al. (2006)
Visualizing Categorical Data
Visualization techniques, data sets, summary and inference procedures aimed particularly at categorical data. Special emphasis is given to highly extensible grid graphics. The package was package was originally inspired by the book "Visualizing Categorical Data" by Michael Friendly and is now the main support package for a new book, "Discrete Data Analysis with R" by Michael Friendly and David Meyer (2015).
Fitting and Testing Generalized Logistic Distributions
Tools for the generalized logistic distribution (Type I, also known as skew-logistic distribution), encompassing basic distribution functions (p, q, d, r, score), maximum likelihood estimation, and structural change methods.
Truncated Gaussian Regression Models
Estimation of models for truncated Gaussian variables by maximum likelihood.
Automatic Generation of Exams in R
Automatic generation of exams based on exercises in Markdown or LaTeX format, possibly including R code for dynamic generation of exercise elements. Exercise types include single-choice and multiple-choice questions, arithmetic problems, string questions, and combinations thereof (cloze). Output formats include standalone files (PDF, HTML, Docx, ODT, ...), Moodle XML, QTI 1.2, QTI 2.1, Blackboard, Canvas, OpenOlat, ILIAS, TestVision, Particify, ARSnova, Kahoot!, Grasple, and TCExam. In addition to fully customizable PDF exams, a standardized PDF format (NOPS) is provided that can be printed, scanned, and automatically evaluated.
R/Weka Interface
An R interface to Weka (Version 3.9.3). Weka is a collection of machine learning algorithms for data mining tasks written in Java, containing tools for data pre-processing, classification, regression, clustering, association rules, and visualization. Package 'RWeka' contains the interface code, the Weka jar is in a separate package 'RWekajars'. For more information on Weka see < https://www.cs.waikato.ac.nz/ml/weka/>.
Color Schemes for Dichromats
Collapse red-green or green-blue distinctions to simulate the effects of different types of color-blindness.
Recursive Partitioning Based on Psychometric Models
Recursive partitioning based on psychometric models, employing the general MOB algorithm (from package partykit) to obtain Bradley-Terry trees, Rasch trees, rating scale and partial credit trees, and MPT trees, trees for 1PL, 2PL, 3PL and 4PL models and generalized partial credit models.
Tools and Classes for Statistical Models
A collection of tools to deal with statistical models. The functionality is experimental and the user interface is likely to change in the future. The documentation is rather terse, but packages `coin' and `party' have some working examples. However, if you find the implemented ideas interesting we would be very interested in a discussion of this proposal. Contributions are more than welcome!