Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 57 packages in 0.04 seconds

Przewodnik — by Przemyslaw Biecek, 8 years ago

Datasets and Functions Used in the Book 'Przewodnik po Pakiecie R'

Data sets and functions used in the polish book "Przewodnik po pakiecie R" (The Hitchhiker's Guide to the R). See more at < http://biecek.pl/R>. Among others you will find here data about housing prices, cancer patients, running times and many others.

ceterisParibus — by Przemyslaw Biecek, 5 years ago

Ceteris Paribus Profiles

Ceteris Paribus Profiles (What-If Plots) are designed to present model responses around selected points in a feature space. For example around a single prediction for an interesting observation. Plots are designed to work in a model-agnostic fashion, they are working for any predictive Machine Learning model and allow for model comparisons. Ceteris Paribus Plots supplement the Break Down Plots from 'breakDown' package.

proton — by Przemysław Biecek, 9 years ago

The Proton Game

'The Proton Game' is a console-based data-crunching game for younger and older data scientists. Act as a data-hacker and find Slawomir Pietraszko's credentials to the Proton server. You have to solve four data-based puzzles to find the login and password. There are many ways to solve these puzzles. You may use loops, data filtering, ordering, aggregation or other tools. Only basics knowledge of R is required to play the game, yet the more functions you know, the more approaches you can try. The knowledge of dplyr is not required but may be very helpful. This game is linked with the ,,Pietraszko's Cave'' story available at http://biecek.pl/BetaBit/Warsaw. It's a part of Beta and Bit series. You will find more about the Beta and Bit series at http://biecek.pl/BetaBit.

archivist — by Przemyslaw Biecek, 3 months ago

Tools for Storing, Restoring and Searching for R Objects

Data exploration and modelling is a process in which a lot of data artifacts are produced. Artifacts like: subsets, data aggregates, plots, statistical models, different versions of data sets and different versions of results. The more projects we work with the more artifacts are produced and the harder it is to manage these artifacts. Archivist helps to store and manage artifacts created in R. Archivist allows you to store selected artifacts as a binary files together with their metadata and relations. Archivist allows to share artifacts with others, either through shared folder or github. Archivist allows to look for already created artifacts by using it's class, name, date of the creation or other properties. Makes it easy to restore such artifacts. Archivist allows to check if new artifact is the exact copy that was produced some time ago. That might be useful either for testing or caching.

BetaBit — by Przemyslaw Biecek, a year ago

Mini Games from Adventures of Beta and Bit

Three games: proton, frequon and regression. Each one is a console-based data-crunching game for younger and older data scientists. Act as a data-hacker and find Slawomir Pietraszko's credentials to the Proton server. In proton you have to solve four data-based puzzles to find the login and password. There are many ways to solve these puzzles. You may use loops, data filtering, ordering, aggregation or other tools. Only basics knowledge of R is required to play the game, yet the more functions you know, the more approaches you can try. In frequon you will help to perform statistical cryptanalytic attack on a corpus of ciphered messages. This time seven sub-tasks are pushing the bar much higher. Do you accept the challenge? In regression you will test your modeling skills in a series of eight sub-tasks. Try only if ANOVA is your close friend. It's a part of Beta and Bit project. You will find more about the Beta and Bit project at < https://github.com/BetaAndBit/Charts>.

localModel — by Przemyslaw Biecek, 3 years ago

LIME-Based Explanations with Interpretable Inputs Based on Ceteris Paribus Profiles

Local explanations of machine learning models describe, how features contributed to a single prediction. This package implements an explanation method based on LIME (Local Interpretable Model-agnostic Explanations, see Tulio Ribeiro, Singh, Guestrin (2016) ) in which interpretable inputs are created based on local rather than global behaviour of each original feature.

PBImisc — by Przemyslaw Biecek, 9 years ago

A Set of Datasets Used in My Classes or in the Book 'Modele Liniowe i Mieszane w R, Wraz z Przykladami w Analizie Danych'

A set of datasets and functions used in the book 'Modele liniowe i mieszane w R, wraz z przykladami w analizie danych'. Datasets either come from real studies or are created to be as similar as possible to real studies.

viralx — by Juan Pablo Acuña González, 8 months ago

Explainers for Regression Models in HIV Research

A dedicated viral-explainer model tool designed to empower researchers in the field of HIV research, particularly in viral load and CD4 (Cluster of Differentiation 4) lymphocytes regression modeling. Drawing inspiration from the 'tidymodels' framework for rigorous model building of Max Kuhn and Hadley Wickham (2020) < https://www.tidymodels.org>, and the 'DALEXtra' tool for explainability by Przemyslaw Biecek (2020) . It aims to facilitate interpretable and reproducible research in biostatistics and computational biology for the benefit of understanding HIV dynamics.

live — by Mateusz Staniak, 5 years ago

Local Interpretable (Model-Agnostic) Visual Explanations

Interpretability of complex machine learning models is a growing concern. This package helps to understand key factors that drive the decision made by complicated predictive model (so called black box model). This is achieved through local approximations that are either based on additive regression like model or CART like model that allows for higher interactions. The methodology is based on Tulio Ribeiro, Singh, Guestrin (2016) . More details can be found in Staniak, Biecek (2018) .

corrgrapher — by Pawel Morgen, 4 years ago

Explore Correlations Between Variables in a Machine Learning Model

When exploring data or models we often examine variables one by one. This analysis is incomplete if the relationship between these variables is not taken into account. The 'corrgrapher' package facilitates simultaneous exploration of the Partial Dependence Profiles and the correlation between variables in the model. The package 'corrgrapher' is a part of the 'DrWhy.AI' universe.