Found 3169 packages in 0.06 seconds
Raster Time Series Visualization
A lightweight 'R' package to visualize large raster time series, building on a fast temporal interpolation core.
Detecting Nonstationarity in Time Series
Provides a nonvisual procedure for screening time series for nonstationarity in the context of intensive longitudinal designs, such as ecological momentary assessments. The method combines two diagnostics: one for detecting trends (based on the split R-hat statistic from Bayesian convergence diagnostics) and one for detecting changes in variance (a novel extension inspired by Levene's test). This approach allows researchers to efficiently and reproducibly detect violations of the stationarity assumption, especially when visual inspection of many individual time series is impractical. The procedure is suitable for use in all areas of research where time series analysis is central. For a detailed description of the method and its validation through simulations and empirical application, see Zitzmann, S., Lindner, C., Lohmann, J. F., & Hecht, M. (2024) "A Novel Nonvisual Procedure for Screening for Nonstationarity in Time Series as Obtained from Intensive Longitudinal Designs" < https://www.researchgate.net/publication/384354932_A_Novel_Nonvisual_Procedure_for_Screening_for_Nonstationarity_in_Time_Series_as_Obtained_from_Intensive_Longitudinal_Designs>.
Nonlinear Time Series Analysis
R functions for (non)linear time series analysis with an emphasis on nonparametric autoregression and order estimation, and tests for linearity / additivity.
Positive Time Series Regression
A collection of functions to simulate, estimate and forecast a wide range of regression based dynamic models for positive time series. This package implements the results presented in Prass, T.S.; Pumi, G.; Taufemback, C.G. and Carlos, J.H. (2025). "Positive time series regression models: theoretical and computational aspects". Computational Statistics 40, 1185–1215.
Intermittent Time Series Forecasting
Time series methods for intermittent demand forecasting. Includes Croston's method and its variants (Moving Average, SBA), and the TSB method. Users can obtain optimal parameters on a variety of loss functions, or use fixed ones (Kourenztes (2014)
Analyzing Categorical Time Series
An implementation of several functions for feature extraction in categorical time series datasets. Specifically, some features related to marginal distributions and serial dependence patterns can be computed. These features can be used to feed clustering and classification algorithms for categorical time series, among others. The package also includes some interesting datasets containing biological sequences. Practitioners from a broad variety of fields could benefit from the general framework provided by 'ctsfeatures'.
Long Memory Time Series
Long Memory Time Series is a collection of functions for estimation, simulation and testing of long memory processes, spurious long memory processes and fractionally cointegrated systems.
Bootstrapped Differences of Time Series
Analyze differences among time series curves with p-value
adjustment for multiple comparisons introduced in Oleson et al
(2015)
Misreported Time Series Analysis
Provides a simple and trustworthy methodology for the analysis of misreported continuous time series. See Moriña, D, Fernández-Fontelo, A, Cabaña, A, Puig P. (2021)
Nonlinear Time Series Analysis
Simulation, estimation, prediction procedure, and model identification methods for nonlinear time series analysis, including threshold autoregressive models, Markov-switching models, convolutional functional autoregressive models, nonlinearity tests, Kalman filters and various sequential Monte Carlo methods. More examples and details about this package can be found in the book "Nonlinear Time Series Analysis" by Ruey S. Tsay and Rong Chen, John Wiley & Sons, 2018 (ISBN: 978-1-119-26407-1).