Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 131 packages in 0.05 seconds

marcox — by Junyi Chen, 9 days ago

Marginal Hazard Ratio Estimation in Clustered Failure Time Data

Estimation of marginal hazard ratios in clustered failure time data. It implements the weighted generalized estimating equation approach based on a semiparametric marginal proportional hazards model (See Niu, Y. Peng, Y.(2015). "A new estimating equation approach for marginal hazard ratio estimation"), accounting for within-cluster correlations. 5 different correlation structures are supported. The package is designed for researchers in biostatistics and epidemiology who require accurate and efficient estimation methods for survival analysis in clustered data settings.

SimInf — by Stefan Widgren, 10 months ago

A Framework for Data-Driven Stochastic Disease Spread Simulations

Provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and 'OpenMP' (if available) to divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goals was to make the package extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. The package contains template models and can be extended with user-defined models. For more details see the paper by Widgren, Bauer, Eriksson and Engblom (2019) . The package also provides functionality to fit models to time series data using the Approximate Bayesian Computation Sequential Monte Carlo ('ABC-SMC') algorithm of Toni and others (2009) .

recmap — by Christian Panse, 2 years ago

Compute the Rectangular Statistical Cartogram

Implements the RecMap MP2 construction heuristic . This algorithm draws maps according to a given statistical value, e.g., election results, population, or epidemiological data. The basic idea of the RecMap algorithm is that each map region, e.g., different countries, is represented by a rectangle. The area of each rectangle represents the statistical value given as input (maintain zero cartographic error). C++ is used to implement the computationally intensive tasks. The vignette included in this package provides documentation about the usage of the recmap algorithm.

predkmeans — by Joshua Keller, 5 years ago

Covariate Adaptive Clustering

Implements the predictive k-means method for clustering observations, using a mixture of experts model to allow covariates to influence cluster centers. Motivated by air pollution epidemiology settings, where cluster membership needs to be predicted across space. Includes functions for predicting cluster membership using spatial splines and principal component analysis (PCA) scores using either multinomial logistic regression or support vector machines (SVMs). For method details see Keller et al. (2017) .

AIPW — by Yongqi Zhong, 14 days ago

Augmented Inverse Probability Weighting

The 'AIPW' package implements the augmented inverse probability weighting, a doubly robust estimator, for average causal effect estimation with user-defined stacked machine learning algorithms. To cite the 'AIPW' package, please use: "Yongqi Zhong, Edward H. Kennedy, Lisa M. Bodnar, Ashley I. Naimi (2021). AIPW: An R Package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects. American Journal of Epidemiology. ". Visit: < https://yqzhong7.github.io/AIPW/> for more information.

nosoi — by Sebastian Lequime, a year ago

A Forward Agent-Based Transmission Chain Simulator

The aim of 'nosoi' (pronounced no.si) is to provide a flexible agent-based stochastic transmission chain/epidemic simulator (Lequime et al. Methods in Ecology and Evolution 11:1002-1007). It is named after the daimones of plague, sickness and disease that escaped Pandora's jar in the Greek mythology. 'nosoi' is able to take into account the influence of multiple variable on the transmission process (e.g. dual-host systems (such as arboviruses), within-host viral dynamics, transportation, population structure), alone or taken together, to create complex but relatively intuitive epidemiological simulations.

SBMTrees — by Jungang Zou, 4 months ago

Sequential Imputation with Bayesian Trees Mixed-Effects Models for Longitudinal Data

Implements a sequential imputation framework using Bayesian Mixed-Effects Trees ('SBMTrees') for handling missing data in longitudinal studies. The package supports a variety of models, including non-linear relationships and non-normal random effects and residuals, leveraging Dirichlet Process priors for increased flexibility. Key features include handling Missing at Random (MAR) longitudinal data, imputation of both covariates and outcomes, and generating posterior predictive samples for further analysis. The methodology is designed for applications in epidemiology, biostatistics, and other fields requiring robust handling of missing data in longitudinal settings.

allestimates — by Zhiqiang Wang, 2 years ago

Effect Estimates from All Models

Estimates and plots effect estimates from models with all possible combinations of a list of variables. It can be used for assessing treatment effects in clinical trials or risk factors in bio-medical and epidemiological research. Like Stata command 'confall' (Wang Z (2007) ), 'allestimates' calculates and stores all effect estimates, and plots them against p values or Akaike information criterion (AIC) values. It currently has functions for linear regression: all_lm(), logistic and Poisson regression: all_glm(), and Cox proportional hazards regression: all_cox().

EpiStats — by Lore Merdrignac, a year ago

Tools for Epidemiologists

Provides set of functions aimed at epidemiologists. The package includes commands for measures of association and impact for case control studies and cohort studies. It may be particularly useful for outbreak investigations including univariable analysis and stratified analysis. The functions for cohort studies include the CS(), CSTable() and CSInter() commands. The functions for case control studies include the CC(), CCTable() and CCInter() commands. References - Cornfield, J. 1956. A statistical problem arising from retrospective studies. In Vol. 4 of Proceedings of the Third Berkeley Symposium, ed. J. Neyman, 135-148. Berkeley, CA - University of California Press. Woolf, B. 1955. On estimating the relation between blood group disease. Annals of Human Genetics 19 251-253. Reprinted in Evolution of Epidemiologic Ideas Annotated Readings on Concepts and Methods, ed. S. Greenland, pp. 108-110. Newton Lower Falls, MA Epidemiology Resources. Gilles Desve & Peter Makary, 2007. 'CSTABLE Stata module to calculate summary table for cohort study' Statistical Software Components S456879, Boston College Department of Economics. Gilles Desve & Peter Makary, 2007. 'CCTABLE Stata module to calculate summary table for case-control study' Statistical Software Components S456878, Boston College Department of Economics.

epiphy — by Christophe Gigot, a year ago

Analysis of Plant Disease Epidemics

A toolbox to make it easy to analyze plant disease epidemics. It provides a common framework for plant disease intensity data recorded over time and/or space. Implemented statistical methods are currently mainly focused on spatial pattern analysis (e.g., aggregation indices, Taylor and binary power laws, distribution fitting, SADIE and 'mapcomp' methods). See Laurence V. Madden, Gareth Hughes, Franck van den Bosch (2007) for further information on these methods. Several data sets that were mainly published in plant disease epidemiology literature are also included in this package.