Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 110 packages in 0.07 seconds

segmenTier — by Rainer Machne, 7 years ago

Similarity-Based Segmentation of Multidimensional Signals

A dynamic programming solution to segmentation based on maximization of arbitrary similarity measures within segments. The general idea, theory and this implementation are described in Machne, Murray & Stadler (2017) . In addition to the core algorithm, the package provides time-series processing and clustering functions as described in the publication. These are generally applicable where a `k-means` clustering yields meaningful results, and have been specifically developed for clustering of the Discrete Fourier Transform of periodic gene expression data (`circadian' or `yeast metabolic oscillations'). This clustering approach is outlined in the supplemental material of Machne & Murray (2012) ), and here is used as a basis of segment similarity measures. Notably, the time-series processing and clustering functions can also be used as stand-alone tools, independent of segmentation, e.g., for transcriptome data already mapped to genes.

CUSUMdesign — by Boxiang Wang, 6 years ago

Compute Decision Interval and Average Run Length for CUSUM Charts

Computation of decision intervals (H) and average run lengths (ARL) for CUSUM charts. Details of the method are seen in Hawkins and Olwell (2012): Cumulative sum charts and charting for quality improvement, Springer Science & Business Media.

crew.aws.batch — by William Michael Landau, a month ago

A Crew Launcher Plugin for AWS Batch

In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The 'crew.aws.batch' package extends the 'mirai'-powered 'crew' package with a worker launcher plugin for AWS Batch. Inspiration also comes from packages 'mirai' by Gao (2023) < https://github.com/r-lib/mirai>, 'future' by Bengtsson (2021) , 'rrq' by FitzJohn and Ashton (2023) < https://github.com/mrc-ide/rrq>, 'clustermq' by Schubert (2019) ), and 'batchtools' by Lang, Bischl, and Surmann (2017). .

ACTCD — by Wenchao Ma, 2 years ago

Asymptotic Classification Theory for Cognitive Diagnosis

Cluster analysis for cognitive diagnosis based on the Asymptotic Classification Theory (Chiu, Douglas & Li, 2009; ). Given the sample statistic of sum-scores, cluster analysis techniques can be used to classify examinees into latent classes based on their attribute patterns. In addition to the algorithms used to classify data, three labeling approaches are proposed to label clusters so that examinees' attribute profiles can be obtained.

crew.cluster — by William Michael Landau, a month ago

Crew Launcher Plugins for Traditional High-Performance Computing Clusters

In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The 'crew.cluster' package extends the 'mirai'-powered 'crew' package with worker launcher plugins for traditional high-performance computing systems. Inspiration also comes from packages 'mirai' by Gao (2023) < https://github.com/r-lib/mirai>, 'future' by Bengtsson (2021) , 'rrq' by FitzJohn and Ashton (2023) < https://github.com/mrc-ide/rrq>, 'clustermq' by Schubert (2019) ), and 'batchtools' by Lang, Bischl, and Surmann (2017). .

maxaltall — by Philip D. Kiser, a year ago

'FASTA' ML and ‘altall’ Sequences from IQ-TREE .state Files

Takes a .state file generated by IQ-TREE as an input and, for each ancestral node present in the file, generates a FASTA-formatted maximum likelihood (ML) sequence as well as an ‘AltAll’ sequence in which uncertain sites, determined by the two parameters thres_1 and thres_2, have the maximum likelihood state swapped with the next most likely state as described in Geeta N. Eick, Jamie T. Bridgham, Douglas P. Anderson, Michael J. Harms, and Joseph W. Thornton (2017), "Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty" .

tram — by Torsten Hothorn, 12 days ago

Transformation Models

Formula-based user-interfaces to specific transformation models implemented in package 'mlt' (, ). Available models include Cox models, some parametric survival models (Weibull, etc.), models for ordered categorical variables, normal and non-normal (Box-Cox type) linear models, and continuous outcome logistic regression (Lohse et al., 2017, ). The underlying theory is described in Hothorn et al. (2018) . An extension to transformation models for clustered data is provided (Barbanti and Hothorn, 2022, ). Multivariate conditional transformation models (Klein et al, 2022, ) and shift-scale transformation models (Siegfried et al, 2023, ) can be fitted as well. The package contains an implementation of a doubly robust score test, described in Kook et al. (2024, ).

Devore7 — by John Verzani, 12 years ago

Data sets from Devore's "Prob and Stat for Eng (7th ed)"

Data sets and sample analyses from Jay L. Devore (2008), "Probability and Statistics for Engineering and the Sciences (7th ed)", Thomson.

BDEsize — by Jong Hee Chung, 4 years ago

Efficient Determination of Sample Size in Balanced Design of Experiments

For a balanced design of experiments, this package calculates the sample size required to detect a certain standardized effect size, under a significance level. This package also provides three graphs; detectable standardized effect size vs power, sample size vs detectable standardized effect size, and sample size vs power, which show the mutual relationship between the sample size, power and the detectable standardized effect size. The detailed procedure is described in R. V. Lenth (2006-9) < https://homepage.divms.uiowa.edu/~rlenth/Power/>, Y. B. Lim (1998), M. A. Kastenbaum, D. G. Hoel and K. O. Bowman (1970) , and Douglas C. Montgomery (2013, ISBN: 0849323312).

autoFRK — by ShengLi Tzeng, 5 years ago

Automatic Fixed Rank Kriging

Automatic fixed rank kriging for (irregularly located) spatial data using a class of basis functions with multi-resolution features and ordered in terms of their resolutions. The model parameters are estimated by maximum likelihood (ML) and the number of basis functions is determined by Akaike's information criterion (AIC). For spatial data with either one realization or independent replicates, the ML estimates and AIC are efficiently computed using their closed-form expressions when no missing value occurs. Details regarding the basis function construction, parameter estimation, and AIC calculation can be found in Tzeng and Huang (2018) . For data with missing values, the ML estimates are obtained using the expectation- maximization algorithm. Apart from the number of basis functions, there are no other tuning parameters, making the method fully automatic. Users can also include a stationary structure in the spatial covariance, which utilizes 'LatticeKrig' package.