An R Interface to the 'Tiingo' Stock Price API

Functionality to download stock prices, cryptocurrency data, and more from the 'Tiingo' API < https://api.tiingo.com/>.


Travis buildstatus Coveragestatus CRANstatus

riingo allows you to access the Tiingo API for stock prices, cryptocurrencies, and intraday feeds from the IEX (Investors Exchange). This can serve as an alternate source of data to Yahoo Finance.

Installation

Install the stable version from CRAN with:

install.packages("riingo")

Install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("DavisVaughan/riingo")

API Token

The first thing you must do is create an account and set an API token. I recommend using the two functions below to help create your account and find the token.

riingo_browse_signup()
riingo_browse_token() # This requires that you are signed in on the site once you sign up

Once you have signed up and have an API token, I recommmend setting the token as an environment variable, RIINGO_TOKEN in an .Renviron file. The easiest way to do this is with usethis.

usethis::edit_r_environ()
 
# Then add a line in the environment file that looks like:
RIINGO_TOKEN = token_here

Do not put the token in quotes, and restart R after you have set it.

See the documentation ?riingo_get_token() for more information.

Basic example

library(riingo)

Let’s grab some data with riingo. The default parameters attempt to get 1 year’s worth of data.

riingo_prices("AAPL")
#> # A tibble: 252 x 14
#>    ticker date                close  high   low  open   volume adjClose
#>    <chr>  <dttm>              <dbl> <dbl> <dbl> <dbl>    <int>    <dbl>
#>  1 AAPL   2017-04-11 00:00:00  142.  143.  140.  143. 30379376     139.
#>  2 AAPL   2017-04-12 00:00:00  142.  142.  141.  142. 20350000     140.
#>  3 AAPL   2017-04-13 00:00:00  141.  142.  141.  142. 17822880     139.
#>  4 AAPL   2017-04-17 00:00:00  142.  142.  141.  141. 16582094     140.
#>  5 AAPL   2017-04-18 00:00:00  141.  142.  141.  141. 14697544     139.
#>  6 AAPL   2017-04-19 00:00:00  141.  142.  140.  142. 17328375     138.
#>  7 AAPL   2017-04-20 00:00:00  142.  143.  141.  141. 23319562     140.
#>  8 AAPL   2017-04-21 00:00:00  142.  143.  142.  142. 17320928     140.
#>  9 AAPL   2017-04-24 00:00:00  144.  144.  143.  144. 17116599     141.
#> 10 AAPL   2017-04-25 00:00:00  145.  145.  144.  144. 18216472     142.
#> # ... with 242 more rows, and 6 more variables: adjHigh <dbl>,
#> #   adjLow <dbl>, adjOpen <dbl>, adjVolume <int>, divCash <dbl>,
#> #   splitFactor <dbl>

But of course you can try and get as much as is available…

riingo_prices("AAPL", start_date = "1950-01-01")
#> # A tibble: 9,412 x 14
#>    ticker date                close  high   low  open  volume adjClose
#>    <chr>  <dttm>              <dbl> <dbl> <dbl> <dbl>   <int>    <dbl>
#>  1 AAPL   1980-12-12 00:00:00  28.8  28.9  28.8  28.8 2093900    0.419
#>  2 AAPL   1980-12-15 00:00:00  27.2  27.4  27.2  27.4  785200    0.398
#>  3 AAPL   1980-12-16 00:00:00  25.2  25.4  25.2  25.4  472000    0.368
#>  4 AAPL   1980-12-17 00:00:00  25.9  26.0  25.9  25.9  385900    0.377
#>  5 AAPL   1980-12-18 00:00:00  26.6  26.8  26.6  26.6  327900    0.389
#>  6 AAPL   1980-12-19 00:00:00  28.2  28.4  28.2  28.2  217100    0.412
#>  7 AAPL   1980-12-22 00:00:00  29.6  29.8  29.6  29.6  166800    0.432
#>  8 AAPL   1980-12-23 00:00:00  30.9  31.0  30.9  30.9  209600    0.451
#>  9 AAPL   1980-12-24 00:00:00  32.5  32.6  32.5  32.5  214300    0.474
#> 10 AAPL   1980-12-26 00:00:00  35.5  35.6  35.5  35.5  248100    0.518
#> # ... with 9,402 more rows, and 6 more variables: adjHigh <dbl>,
#> #   adjLow <dbl>, adjOpen <dbl>, adjVolume <int>, divCash <dbl>,
#> #   splitFactor <dbl>

And multiple tickers work as well.

riingo_prices(c("AAPL", "IBM"), start_date = "2001-01-01", end_date = "2005-01-01", resample_frequency = "monthly")
#> # A tibble: 98 x 14
#>    ticker date                close  high   low  open    volume adjClose
#>    <chr>  <dttm>              <dbl> <dbl> <dbl> <dbl>     <int>    <dbl>
#>  1 AAPL   2001-01-31 00:00:00  21.6  22.5  14.4  14.9 244811800    1.38 
#>  2 AAPL   2001-02-28 00:00:00  18.2  21.9  18.0  20.7 125424400    1.16 
#>  3 AAPL   2001-03-30 00:00:00  22.1  23.8  17.2  17.8 192840400    1.41 
#>  4 AAPL   2001-04-30 00:00:00  25.5  27.1  18.8  22.1 199267700    1.63 
#>  5 AAPL   2001-05-31 00:00:00  20.0  26.7  19.3  25.4 133364900    1.27 
#>  6 AAPL   2001-06-29 00:00:00  23.2  25.1  19.4  20.1 136397600    1.48 
#>  7 AAPL   2001-07-31 00:00:00  18.8  25.2  17.8  23.6 154555400    1.20 
#>  8 AAPL   2001-08-31 00:00:00  18.6  19.9  17.3  19.0  91595700    1.18 
#>  9 AAPL   2001-09-28 00:00:00  15.5  19.1  14.7  18.5  98777200    0.989
#> 10 AAPL   2001-10-31 00:00:00  17.6  19.4  14.8  15.5 134718700    1.12 
#> # ... with 88 more rows, and 6 more variables: adjHigh <dbl>,
#> #   adjLow <dbl>, adjOpen <dbl>, adjVolume <dbl>, divCash <dbl>,
#> #   splitFactor <dbl>

Intraday data

You can get limited intraday data with riingo_iex_prices(). This gives you access to Tiingo’s direct feed to the IEX.

riingo_iex_prices("AAPL", resample_frequency = "1min")
#> # A tibble: 2,000 x 6
#>    ticker date                 open  high   low close
#>    <chr>  <dttm>              <dbl> <dbl> <dbl> <dbl>
#>  1 AAPL   2018-04-05 16:26:00  173.  173.  173.  173.
#>  2 AAPL   2018-04-05 16:27:00  173.  173.  173.  173.
#>  3 AAPL   2018-04-05 16:28:00  173.  173.  173.  173.
#>  4 AAPL   2018-04-05 16:29:00  173.  173.  173.  173.
#>  5 AAPL   2018-04-05 16:30:00  173.  173.  173.  173.
#>  6 AAPL   2018-04-05 16:31:00  174.  174.  173.  173.
#>  7 AAPL   2018-04-05 16:32:00  173.  173.  173.  173.
#>  8 AAPL   2018-04-05 16:33:00  173.  173.  173.  173.
#>  9 AAPL   2018-04-05 16:34:00  173.  173.  173.  173.
#> 10 AAPL   2018-04-05 16:35:00  173.  173.  173.  173.
#> # ... with 1,990 more rows

See the documentation for all of the restrictions.

Meta data

Meta data about each ticker is available through riingo_meta().

riingo_meta(c("AAPL", "QQQ"))
#> # A tibble: 2 x 6
#>   ticker name   startDate           description        endDate            
#>   <chr>  <chr>  <dttm>              <chr>              <dttm>             
#> 1 AAPL   Apple… 1980-12-12 00:00:00 Apple Inc. (Apple… 2018-04-11 00:00:00
#> 2 QQQ    POWER… 1999-03-10 00:00:00 "PowerShares QQQ™… 2018-04-11 00:00:00
#> # ... with 1 more variable: exchangeCode <chr>

Available tickers

You can check if a ticker is supported on Tiingo with is_supported_ticker() and you can get a tibble of all supported tickers with supported_tickers()

is_supported_ticker("AAPL")
#> [1] TRUE
 
tickers <- supported_tickers()
tickers
#> # A tibble: 64,992 x 6
#>    ticker exchange assetType priceCurrency startDate          
#>    <chr>  <chr>    <chr>     <chr>         <dttm>             
#>  1 000001 SHE      Stock     CNY           2007-08-30 00:00:00
#>  2 000002 SHE      Stock     CNY           2000-01-04 00:00:00
#>  3 000004 SHE      Stock     CNY           2007-08-31 00:00:00
#>  4 000005 SHE      Stock     CNY           2001-01-02 00:00:00
#>  5 000006 SHE      Stock     CNY           2007-08-31 00:00:00
#>  6 000007 SHE      Stock     CNY           2007-08-31 00:00:00
#>  7 000008 SHE      Stock     CNY           2000-01-03 00:00:00
#>  8 000009 SHE      Stock     CNY           2000-01-03 00:00:00
#>  9 000010 SHE      Stock     CNY           2007-08-31 00:00:00
#> 10 000011 SHE      Stock     CNY           2018-01-02 00:00:00
#> # ... with 64,982 more rows, and 1 more variable: endDate <dttm>

Quote data

Another benefit of getting a feed from IEX is real time quote data. This includes TOP (top of book) bid and ask prices, along with most recent sale prices.

It is normal for some fields to return NA when outside of trading hours.

riingo_iex_quote(c("AAPL", "QQQ"))
#> # A tibble: 2 x 17
#>   ticker  last askSize lastsaleTimeStamp   bidPrice volume
#>   <chr>  <dbl>   <int> <dttm>                 <dbl>  <int>
#> 1 AAPL    172.     150 2018-04-11 16:41:05     172.      0
#> 2 QQQ     160.     400 2018-04-11 16:46:28     160.      0
#> # ... with 11 more variables: quoteTimestamp <dttm>, tngoLast <dbl>,
#> #   mid <dbl>, bidSize <int>, prevClose <dbl>, timestamp <dttm>,
#> #   high <dbl>, lastSize <int>, askPrice <dbl>, open <dbl>, low <dbl>

Crypto data

Cryptocurrency data can be accessed with riingo_crypto_*() functions. By default, 1 year’s worth is pulled if available. Some tickers go back much further than others.

riingo_crypto_prices(c("btcusd", "btceur"))
#> # A tibble: 485 x 11
#>    ticker baseCurrency quoteCurrency date                  open   high
#>    <chr>  <chr>        <chr>         <dttm>               <dbl>  <dbl>
#>  1 btceur btc          eur           2017-12-14 00:00:00 13873. 14354.
#>  2 btceur btc          eur           2017-12-15 00:00:00 14076. 15195.
#>  3 btceur btc          eur           2017-12-16 00:00:00 15073. 16881.
#>  4 btceur btc          eur           2017-12-17 00:00:00 16573. 16933.
#>  5 btceur btc          eur           2017-12-18 00:00:00 16010. 16439.
#>  6 btceur btc          eur           2017-12-19 00:00:00 16051. 16329.
#>  7 btceur btc          eur           2017-12-20 00:00:00 14994. 15408.
#>  8 btceur btc          eur           2017-12-21 00:00:00 13855. 14912.
#>  9 btceur btc          eur           2017-12-22 00:00:00 13314. 13562.
#> 10 btceur btc          eur           2017-12-23 00:00:00 12702. 14465.
#> # ... with 475 more rows, and 5 more variables: low <dbl>, close <dbl>,
#> #   volume <dbl>, volumeNotional <dbl>, tradesDone <dbl>

Intraday data is available as well. The intraday ranges are not well documented, so it is a little hard to know what you can pull. From what I have discovered, you can pull a few days at a time, with the max date of intraday data being about ~4 months back (When the date was April 5, 2018, I could pull intraday data back to December 15, 2017, but only 5000 minutes at a time).

riingo_crypto_prices("btcusd", start_date = Sys.Date() - 5, end_date = Sys.Date(), resample_frequency = "1min")
#> # A tibble: 5,001 x 11
#>    ticker baseCurrency quoteCurrency date                 open  high   low
#>    <chr>  <chr>        <chr>         <dttm>              <dbl> <dbl> <dbl>
#>  1 btcusd btc          usd           2018-04-06 00:00:00 6771. 6782. 6770.
#>  2 btcusd btc          usd           2018-04-06 00:01:00 6772. 6777. 6763.
#>  3 btcusd btc          usd           2018-04-06 00:02:00 6775. 6778. 6766.
#>  4 btcusd btc          usd           2018-04-06 00:03:00 6774. 6776. 6770.
#>  5 btcusd btc          usd           2018-04-06 00:04:00 6774. 6785. 6772.
#>  6 btcusd btc          usd           2018-04-06 00:05:00 6782. 6787. 6771.
#>  7 btcusd btc          usd           2018-04-06 00:06:00 6775. 6788. 6772.
#>  8 btcusd btc          usd           2018-04-06 00:07:00 6790. 6794. 6787.
#>  9 btcusd btc          usd           2018-04-06 00:08:00 6793. 6797. 6790.
#> 10 btcusd btc          usd           2018-04-06 00:09:00 6790. 6795. 6782.
#> # ... with 4,991 more rows, and 4 more variables: close <dbl>,
#> #   volume <dbl>, volumeNotional <dbl>, tradesDone <dbl>

Also available are meta data with riingo_crypto_meta(), and TOP (top of book) quote data with riingo_crypto_quote().

Lastly, you can extract raw (unaggregated) data feeds from multiple exchanges by using the raw = TRUE argument in the price and quote crypto function.

News

riingo 0.1.0

  • First release
  • Added a NEWS.md file to track changes to the package.

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.

install.packages("riingo")

0.1.0 by Davis Vaughan, a year ago


https://github.com/business-science/riingo


Report a bug at https://github.com/business-science/riingo/issues


Browse source code at https://github.com/cran/riingo


Authors: Davis Vaughan [aut, cre] , Matt Dancho [aut]


Documentation:   PDF Manual  


MIT + file LICENSE license


Imports crayon, glue, httr, jsonlite, tibble, rlang, purrr

Suggests dplyr, testthat, covr


See at CRAN