Neyman-Pearson (NP) Classification Algorithms and NP Receiver Operating Characteristic (NP-ROC) Curves

In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (i.e., the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (i.e., the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, alpha, on the type I error. Although the NP paradigm has a century-long history in hypothesis testing, it has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than alpha do not satisfy the type I error control objective because the resulting classifiers are still likely to have type I errors much larger than alpha. As a result, the NP paradigm has not been properly implemented for many classification scenarios in practice. In this work, we develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, including popular methods such as logistic regression, support vector machines and random forests. Powered by this umbrella algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands, motivated by the popular receiver operating characteristic (ROC) curves. NP-ROC bands will help choose in a data adaptive way and compare different NP classifiers. The paper is available at .


News

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.

install.packages("nproc")

2.0.9 by Yang Feng, 3 months ago


http://arxiv.org/abs/1608.03109


Browse source code at https://github.com/cran/nproc


Authors: Yang Feng, Jingyi Jessica Li and Xin Tong


Documentation:   PDF Manual  


GPL-2 license


Imports glmnet, e1071, randomForest, MASS, parallel, ada, stats, graphics, ROCR, tree

Suggests knitr, rmarkdown


See at CRAN