Estimate parameters of logistic regression with missing data and perform model selection, using algorithm Stochastic Approximation EM.
misaem
is an implementation of methodology which performs statistical inference for logistic regression model with missing data. This method is based on likelihood, including:
Now you can install the package misaem from CRAN.
install.packages("misaem")
Basicly,
miss.saem
contains the procedure of estimation for parameters, as well as their variance, and observed likelihood.model_selection
aims at selecting a best model according to BIC.pred_saem
performs prediction on a test set which may contain missing values.For more details, You can find the vignette, which illustrate the basic and further usage of misaem package:
library(misaem)vignette('misaem')
Stochastic Approximation EM for Logistic regression with missing values (2018, Jiang W., Josse J., Lavielle M., Traumabase group)" arxiv link.
A minor release mainly fixing bugs and typos:
Fix a bug in model_selection
, now it can correctly perform model selection if the full model is the best model.
In pred_saem
, two methods for prediction of test set with missingness are provided.
Fix some typos in the vignettes. The length of codes now fits the page wide of html.
Delete unused Imports ‘magrittr’ in DESCRIPTION file.
Change the index of vignitte from 'SAEM' to 'misaem tutorial'.
Update README.md.