Inspection, Comparison and Visualisation of Data Frames

A collection of utilities for columnwise summary, comparison and visualisation of data frames. Functions report missingness, categorical levels, numeric distribution, correlation, column types and memory usage.


Build Status codecov

Overview

inspectdf is collection of utilities for columnwise summary, comparison and visualisation of data frames. Functions are provided to summarise missingness, categorical levels, numeric distribution, correlation, column types and memory usage.

The package has three aims:

  • to speed up repetitive checking and exploratory tasks for data frames
  • to make it easier to compare data frames for differences and inconsistencies
  • to support quick visualisation of data frames

Key functions

  • inspect_types() summary of column types
  • inspect_mem() summary of memory usage of columns
  • inspect_na() columnwise prevalence of missing values
  • inspect_cor() correlation coefficients of numeric columns
  • inspect_imb() feature imbalance of categorical columns
  • inspect_num() summaries of numeric columns
  • inspect_cat() summaries of categorical columns

Installation

To install the development version of the package, use

devtools::install_github("alastairrushworth/inspectdf")
library(inspectdf)

Illustrative data: starwars

The examples below make use of the starwars data from the dplyr package

# some example data
data(starwars, package = "dplyr")

For illustrating comparisons of dataframes, use the starwars data and produce two new dataframes star_1 and star_2 that randomly sample the rows of the original and drop a couple of columns.

library(dplyr)
star_1 <- starwars %>% sample_n(50)
star_2 <- starwars %>% sample_n(50) %>% select(-1, -2)

Column types

inspect_types() for a single dataframe

To explore the column types in a data frame, use the function inspect_types(). The command returns a tibble summarising the counts and percentages of columns with particular types. A barplot is also returned when show_plot = TRUE.

# return tibble and visualisation of columns types
inspect_types(starwars, show_plot = TRUE)

## # A tibble: 4 x 4
##   type        cnt  pcnt col_name 
##   <chr>     <int> <dbl> <list>   
## 1 character     7 53.8  <chr [7]>
## 2 list          3 23.1  <chr [3]>
## 3 numeric       2 15.4  <chr [2]>
## 4 integer       1  7.69 <chr [1]>
inspect_types() for two dataframes

When a second dataframe is provided, inspect_types() will create a dataframe comparing the count and percentage of each column type for each of the input dataframes. The summaries for the first and second dataframes are show in columns with names appended with _1 and _2, respectively.

inspect_types(star_1, star_2, show_plot = TRUE)

## # A tibble: 4 x 5
##   type      cnt_1 pcnt_1 cnt_2 pcnt_2
##   <chr>     <int>  <dbl> <dbl>  <dbl>
## 1 character     7  53.8      6   54.5
## 2 list          3  23.1      3   27.3
## 3 numeric       2  15.4      2   18.2
## 4 integer       1   7.69     0    0

Memory usage

inspect_mem() for a single dataframe

To explore the memory usage of the columns in a data frame, use inspect_mem(). The command returns a tibble containing the size of each column in the dataframe. A barplot is also returned when show_plot = TRUE.

inspect_mem(starwars, show_plot = TRUE)

## # A tibble: 13 x 3
##    col_name   size        pcnt
##    <chr>      <chr>      <dbl>
##  1 films      19.54 Kb  36.5  
##  2 starships  7.27 Kb   13.6  
##  3 name       6.13 Kb   11.5  
##  4 vehicles   5.8 Kb    10.8  
##  5 homeworld  3.52 Kb    6.58 
##  6 species    2.88 Kb    5.39 
##  7 skin_color 2.59 Kb    4.85 
##  8 eye_color  1.57 Kb    2.93 
##  9 hair_color 1.41 Kb    2.63 
## 10 gender     976 bytes  1.78 
## 11 mass       744 bytes  1.36 
## 12 birth_year 744 bytes  1.36 
## 13 height     400 bytes  0.730
inspect_mem() for two dataframes

When a second dataframe is provided, inspect_mem() will create a dataframe comparing the size of each column for both input dataframes. The summaries for the first and second dataframes are show in columns with names appended with _1 and _2, respectively.

inspect_mem(star_1, star_2, show_plot = TRUE)

## # A tibble: 13 x 5
##    col_name   size_1    size_2    pcnt_1 pcnt_2
##    <chr>      <chr>     <chr>      <dbl>  <dbl>
##  1 films      11.2 Kb   11.82 Kb  34.6    40.5 
##  2 starships  4.53 Kb   4.7 Kb    14.0    16.1 
##  3 name       3.55 Kb   <NA>      11.0    NA   
##  4 vehicles   3.41 Kb   3.39 Kb   10.5    11.6 
##  5 homeworld  2.3 Kb    2.12 Kb    7.11    7.26
##  6 species    1.82 Kb   1.82 Kb    5.63    6.24
##  7 skin_color 1.76 Kb   1.79 Kb    5.44    6.13
##  8 eye_color  1.1 Kb    1.05 Kb    3.41    3.62
##  9 hair_color 960 bytes 1 Kb       2.90    3.43
## 10 gender     616 bytes 624 bytes  1.86    2.09
## 11 mass       448 bytes 448 bytes  1.35    1.50
## 12 birth_year 448 bytes 448 bytes  1.35    1.50
## 13 height     248 bytes <NA>       0.749  NA

Missing values

inspect_na() for a single dataframe

inspect_na() summarises the prevalence of missing values by each column in a data frame. A tibble containing the count (cnt) and the overall percentage (pcnt) of missing values is returned A barplot is also returned when show_plot is set to TRUE.

inspect_na(starwars, show_plot = TRUE)

## # A tibble: 13 x 3
##    col_name     cnt  pcnt
##    <chr>      <int> <dbl>
##  1 birth_year    44 50.6 
##  2 mass          28 32.2 
##  3 homeworld     10 11.5 
##  4 height         6  6.90
##  5 hair_color     5  5.75
##  6 species        5  5.75
##  7 gender         3  3.45
##  8 name           0  0   
##  9 skin_color     0  0   
## 10 eye_color      0  0   
## 11 films          0  0   
## 12 vehicles       0  0   
## 13 starships      0  0
inspect_na() for two dataframes

When a second dataframe is provided, inspect_na() returns a tibble containing counts and percentage missingness by column, with summaries for the first and second data frames are show in columns with names appended with _1 and _2, respectively. In addition, a p-value is calculated which provides a measure of evidence of whether the difference in missing values is significantly different.

inspect_na(star_1, star_2, show_plot = TRUE)

## # A tibble: 13 x 6
##    col_name   cnt_1 pcnt_1 cnt_2 pcnt_2 p_value
##    <chr>      <int>  <dbl> <int>  <dbl>   <dbl>
##  1 birth_year    26     52    24     48   0.841
##  2 mass          19     38    14     28   0.395
##  3 homeworld      6     12     2      4   0.269
##  4 height         4      8    NA     NA  NA    
##  5 hair_color     3      6     4      8   1.000
##  6 species        3      6     2      4   1.000
##  7 gender         2      4     2      4   1    
##  8 name           0      0    NA     NA  NA    
##  9 skin_color     0      0     0      0  NA    
## 10 eye_color      0      0     0      0  NA    
## 11 films          0      0     0      0  NA    
## 12 vehicles       0      0     0      0  NA    
## 13 starships      0      0     0      0  NA

Notes:

  • Smaller p-values indicate stronger evidence of a difference in the missingness rate for a single column
  • If a column appears in one data frame and not the other - for example height appears in star_1 but nor star_2, then the corresponding pcnt_, cnt_ and p_value columns will contain NA
  • Where the missingness is identically 0, the p_value is NA.
  • The visualisation illustrates the significance of the difference using a coloured bar overlay. Orange bars indicate evidence of equality or missingness, while blue bars indicate inequality. If a p_value cannot be calculated, no coloured bar is shown.
  • The significance level can be specified using the alpha argument to inspect_na(). The default is alpha = 0.05.

Correlation

inspect_cor() for a single dataframe

inspect_cor() returns a tibble containing Pearson's correlation coefficient, confidence intervals and p-values for pairs of numeric columns . The function combines the functionality of cor() and cor.test() in a more convenient wrapper. A point and whiskers plot is also returned when show_plot = TRUE.

inspect_cor(starwars, show_plot = T)

## # A tibble: 3 x 6
##   col_1      col_2    corr p_value  lower   upper
##   <chr>      <chr>   <dbl>   <dbl>  <dbl>   <dbl>
## 1 birth_year mass    0.478 0.00318  0.130  0.721 
## 2 birth_year height -0.400 0.00789 -0.651 -0.0690
## 3 mass       height  0.134 0.312   -0.163  0.409

Notes

  • The tibble is sorted in descending order of the absolute coefficient |ρ|.
  • inspect_cor drops missing values prior to calculation of each correlation coefficient.
  • The p_value is associated with the null hypothesis H0 : ρ = 0.
inspect_cor() for for two dataframes

When a second dataframe is provided, inspect_cor() returns a tibble that compares correlation coefficients of the first dataframe to those in the second. The p_value column contains a measure of evidence for whether the two correlation coefficients are equal or not.

inspect_cor(star_1, star_2, show_plot = TRUE)

## # A tibble: 3 x 5
##   col_1      col_2  corr_1 corr_2   p_value
##   <chr>      <chr>   <dbl>  <dbl>     <dbl>
## 1 mass       height  0.801 NA     NA       
## 2 birth_year height -0.572 NA     NA       
## 3 birth_year mass   -0.421  0.986  8.03e-46

Notes:

  • Smaller p_value indicates stronger evidence against the null hypothesis H0 : ρ1 = ρ2 and an indication that the true correlation coefficients differ.
  • The visualisation illustrates the significance of the difference using a coloured bar overlay. Orange bars indicate evidence of equality of correlations, while blue bars indicate inequality. If a p_value cannot be calculated, no coloured bar is shown.
  • The significance level can be specified using the alpha argument to inspect_cor(). The default is alpha = 0.05.

Feature imbalance

inspect_imb() for a single dataframe

Understanding categorical columns that are dominated by a single level can be useful. inspect_imb() returns a tibble containing categorical column names (col_name); the most frequently occurring categorical level in each column (value) and pctn & cnt the percentage and count which the value occurs. The tibble is sorted in descending order of pcnt. A barplot is also returned when show_plot is set to TRUE.

inspect_imb(starwars, show_plot = TRUE)

## # A tibble: 7 x 4
##   col_name   value   pcnt   cnt
##   <chr>      <chr>  <dbl> <int>
## 1 gender     male   71.3     19
## 2 hair_color none   42.5      1
## 3 species    Human  40.2      1
## 4 eye_color  brown  24.1     10
## 5 skin_color fair   19.5      2
## 6 homeworld  Naboo  12.6      3
## 7 name       Ackbar  1.15     1
inspect_imb() for two dataframes

When a second dataframe is provided, inspect_imb() returns a tibble that compares the frequency of the most common categorical values of the first dataframe to those in the second. The p_value column contains a measure of evidence for whether the true frequencies are equal or not.

inspect_imb(star_1, star_2, show_plot = TRUE)

## # A tibble: 7 x 7
##   col_name   value            pcnt_1 cnt_1 pcnt_2 cnt_2 p_value
##   <chr>      <chr>             <dbl> <int>  <dbl> <int>   <dbl>
## 1 gender     male                72     10     72    11   1.000
## 2 hair_color none                40      1     44     1   1    
## 3 species    Human               40      1     42     1   1    
## 4 eye_color  brown               24      8     NA    NA  NA    
## 5 skin_color fair                24      1     20     2   1    
## 6 homeworld  Tatooine            14.     2     16     1   1    
## 7 name       Anakin Skywalker     2      1     NA    NA  NA
  • Smaller p_value indicates stronger evidence against the null hypothesis that the true frequency of the most common values is the same.
  • The visualisation illustrates the significance of the difference using a coloured bar overlay. Orange bars indicate evidence of equality of the imbalance, while blue bars indicate inequality. If a p_value cannot be calculated, no coloured bar is shown.
  • The significance level can be specified using the alpha argument to inspect_imb(). The default is alpha = 0.05.

Numeric summaries

inspect_num() combining some of the functionality of summary() and hist() by returning summaries of numeric columns. inspect_num() returns standard numerical summaries (min, q1, mean, median,q3, max, sd), but also the percentage of missing entries (pcnt_na) and a simple histogram (hist). If show_plot = TRUE a histogram is generated for each numeric feature.

inspect_num(starwars, show_plot = TRUE, breaks = 10)

## # A tibble: 3 x 10
##   col_name     min    q1 median  mean    q3   max    sd pcnt_na hist       
##   <chr>      <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <list>     
## 1 birth_year     8  35       52  87.6  72     896 155.    50.6  <tibble [1…
## 2 height        66 167      180 174.  191     264  34.8    6.90 <tibble [1…
## 3 mass          15  55.6     79  97.3  84.5  1358 169.    32.2  <tibble [1…

The hist column is a list whose elements are tibbles each containing the relative frequencies of bins for each feature. These tibbles are used to generate the histograms when show_plot = TRUE. For example, the histogram for starwars$birth_year is

inspect_num(starwars)$hist$birth_year
## # A tibble: 20 x 2
##    value        prop
##    <chr>       <dbl>
##  1 [-Inf, 0)  0     
##  2 [0, 50)    0.488 
##  3 [50, 100)  0.395 
##  4 [100, 150) 0.0465
##  5 [150, 200) 0     
##  6 [200, 250) 0.0233
##  7 [250, 300) 0     
##  8 [300, 350) 0     
##  9 [350, 400) 0     
## 10 [400, 450) 0     
## 11 [450, 500) 0     
## 12 [500, 550) 0     
## 13 [550, 600) 0     
## 14 [600, 650) 0.0233
## 15 [650, 700) 0     
## 16 [700, 750) 0     
## 17 [750, 800) 0     
## 18 [800, 850) 0     
## 19 [850, 900) 0.0233
## 20 [900, Inf) 0

Categorical levels

inspect_cat() returns a tibble summarising categorical features in a data frame, combining the functionality of the inspect_imb() and table() functions. If show_plot = TRUE a barplot is generated showing the relative split. The tibble generated contains the columns

  • col_name name of each categorical column
  • cnt the number of unique levels in the feature
  • common the most common level (see also inspect_imb())
  • common_pcnt the percentage occurrence of the most dominant level
  • levels a list of tibbles each containing frequency tabulations of all levels
inspect_cat(starwars, show_plot = T)

## # A tibble: 7 x 5
##   col_name     cnt common common_pcnt levels           
##   <chr>      <int> <chr>        <dbl> <list>           
## 1 eye_color     15 brown        24.1  <tibble [15 × 2]>
## 2 gender         5 male         71.3  <tibble [5 × 2]> 
## 3 hair_color    13 none         42.5  <tibble [13 × 2]>
## 4 homeworld     49 Naboo        12.6  <tibble [49 × 2]>
## 5 name          87 Ackbar        1.15 <tibble [87 × 2]>
## 6 skin_color    31 fair         19.5  <tibble [31 × 2]>
## 7 species       38 Human        40.2  <tibble [38 × 2]>

For example, the levels for the hair_color column are

inspect_cat(starwars)$levels$hair_color
## # A tibble: 13 x 2
##    value           prop
##    <chr>          <dbl>
##  1 none          0.425 
##  2 brown         0.207 
##  3 black         0.149 
##  4 <NA>          0.0575
##  5 white         0.0460
##  6 blond         0.0345
##  7 auburn        0.0115
##  8 auburn, grey  0.0115
##  9 auburn, white 0.0115
## 10 blonde        0.0115
## 11 brown, grey   0.0115
## 12 grey          0.0115
## 13 unknown       0.0115

Note that by default, if NA values are present, they are counted as a distinct categorical level.

News

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.

install.packages("inspectdf")

0.0.5 by Alastair Rushworth, 22 days ago


https://alastairrushworth.github.io/inspectdf/


Report a bug at http://github.com/alastairrushworth/inspectdf/issues


Browse source code at https://github.com/cran/inspectdf


Authors: Alastair Rushworth [aut, cre] , David Wilkins [ctb]


Documentation:   PDF Manual  


GPL-2 license


Imports dplyr, ggplot2, magrittr, progress, Rcpp, tibble, tidyr, ggfittext

Suggests testthat

Linking to Rcpp


See at CRAN