Imputation of Financial Time Series with Missing Values

Missing values often occur in financial data due to a variety of reasons (errors in the collection process or in the processing stage, lack of asset liquidity, lack of reporting of funds, etc.). However, most data analysis methods expect complete data and cannot be employed with missing values. One convenient way to deal with this issue without having to redesign the data analysis method is to impute the missing values. This package provides an efficient way to impute the missing values based on modeling the time series with a random walk or an autoregressive (AR) model, convenient to model log-prices and log-volumes in financial data. In the current version, the imputation is univariate-based (so no asset correlation is used). The package is based on the paper: J. Liu, S. Kumar, and D. P. Palomar (2019). Parameter Estimation of Heavy-Tailed AR Model With Missing Data Via Stochastic EM. IEEE Trans. on Signal Processing, vol. 67, no. 8, pp. 2159-2172. .


Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.


0.1.0 by Daniel P. Palomar, 7 months ago,

Report a bug at

Browse source code at

Authors: Junyan Liu [aut] , Daniel P. Palomar [cre, aut]

Documentation:   PDF Manual  

Task views: Missing Data

GPL-3 license

Imports MASS, zoo

Suggests bookdown, knitr, ggplot2, prettydoc, rmarkdown, R.rsp, testthat, xts

See at CRAN