Power Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials

Calculates power for assessment of intermediate biomarker responses as correlates of risk in the active treatment group in clinical efficacy trials, as described in Gilbert, Janes, and Huang, Power/Sample Size Calculations for Assessing Correlates of Risk in Clinical Efficacy Trials (2016, Statistics in Medicine). The methods differ from past approaches by accounting for the level of clinical treatment efficacy overall and in biomarker response subgroups, which enables the correlates of risk results to be interpreted in terms of potential correlates of efficacy/protection. The methods also account for inter-individual variability of the observed biomarker response that is not biologically relevant (e.g., due to technical measurement error of the laboratory assay used to measure the biomarker response), which is important because power to detect a specified correlate of risk effect size is heavily affected by the biomarker's measurement error. The methods can be used for a general binary clinical endpoint model with a univariate dichotomous, trichotomous, or continuous biomarker response measured in active treatment recipients at a fixed timepoint after randomization, with either case-cohort Bernoulli sampling or case-control without-replacement sampling of the biomarker (a baseline biomarker is handled as a trivial special case). In a specified two-group trial design, the computeN() function can initially be used for calculating additional requisite design parameters pertaining to the target population of active treatment recipients observed to be at risk at the biomarker sampling timepoint. Subsequently, the power calculation employs an inverse probability weighted logistic regression model fitted by the tps() function in the 'osDesign' package. Power results as well as the relationship between the correlate of risk effect size and treatment efficacy can be visualized using various plotting functions.


CoRpower is an R package implementing power calculations described in Gilbert PB, Janes HE, Huang Y. Power/sample size calculations for assessing correlates of risk in clinical efficacy trials. Statistics in Medicine. 2016;35(21):45-59.

News

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.

install.packages("CoRpower")

1.0.0 by Michal Juraska, 4 months ago


https://github.com/mjuraska/CoRpower


Report a bug at https://github.com/mjuraska/CoRpower/issues


Browse source code at https://github.com/cran/CoRpower


Authors: Peter Gilbert [aut] , Stephanie Wu [aut] , Michal Juraska [aut, cre] , Yunda Huang [aut]


Documentation:   PDF Manual  


GPL-2 license


Imports survival, osDesign

Suggests knitr, rmarkdown


See at CRAN