Variable Selection for Missing Data

Use a regularization likelihood method to achieve variable selection purpose. Likelihood can be worked with penalty lasso, smoothly clipped absolute deviations (SCAD), and minimax concave penalty (MCP). Tuning parameter selection techniques include cross validation (CV), Bayesian information criterion (BIC) (low and high), stability of variable selection (sVS), stability of BIC (sBIC), and stability of estimation (sEST). More details see Jiwei Zhao, Yang Yang, and Yang Ning (2018) "Penalized pairwise pseudo likelihood for variable selection with nonignorable missing data." Statistica Sinica.


TVsMiss 0.1.1

  • Change '&' to '&&' in C code

TVsMiss 0.1.0

  • first version

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.


0.1.1 by Yang Yang, a year ago

Report a bug at

Browse source code at

Authors: Jiwei Zhao , Yang Yang , and Ning Yang

Documentation:   PDF Manual  

Task views: Missing Data

GPL (>= 2) license

Imports glmnet, Rcpp

Linking to Rcpp

See at CRAN