All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

NMsim — 0.1.5

Seamless 'Nonmem' Simulation Platform

nmslibR — 1.0.7

Non Metric Space (Approximate) Library

NMTox — 0.1.0

Dose-Response Relationship Analysis of Nanomaterial Toxicity

NMVANOVA — 1.1.0

Novice Model Variation ANOVA

nmw — 0.1.5

Understanding Nonlinear Mixed Effects Modeling for Population Pharmacokinetics

nn2poly — 0.1.2

Neural Network Weights Transformation into Polynomial Coefficients

nna — 0.0.2.1

Nearest-Neighbor Analysis

NNbenchmark — 3.2.0

Datasets and Functions to Benchmark Neural Network Packages

nncc — 2.0.0

Nearest Neighbors Matching of Case-Control Data

nndiagram — 1.0.0

Generator of 'LaTeX' Code for Drawing Neural Network Diagrams with 'TikZ'

nnet — 7.3-19

Feed-Forward Neural Networks and Multinomial Log-Linear Models

nnfor — 0.9.9

Time Series Forecasting with Neural Networks

nnGarrote — 1.0.4

Non-Negative Garrote Estimation with Penalized Initial Estimators

nngeo — 0.4.8

k-Nearest Neighbor Join for Spatial Data

nnlasso — 0.3

Non-Negative Lasso and Elastic Net Penalized Generalized Linear Models

nnlib2Rcpp — 0.2.9

A Tool for Creating Custom Neural Networks in C++ and using Them in R

nnls — 1.6

The Lawson-Hanson Algorithm for Non-Negative Least Squares (NNLS)

NNMIS — 1.0.1

Nearest Neighbor Based Multiple Imputation for Survival Data with Missing Covariates

nnR — 0.1.0

Neural Networks Made Algebraic

NNS — 10.9.3

Nonlinear Nonparametric Statistics

nnspat — 0.1.2

Nearest Neighbor Methods for Spatial Patterns

nnt — 0.1.4

The Number Needed to Treat (NNT) for Survival Endpoint

NNTbiomarker — 0.29.11

Calculate Design Parameters for Biomarker Validation Studies

nnTensor — 1.3.0

Non-Negative Tensor Decomposition

nntmvn — 1.0.0

Draw Samples of Truncated Multivariate Normal Distributions

NO.PING.PONG — 0.1.8.7

Incorporating Previous Findings When Evaluating New Data

noaastormevents — 0.2.0

Explore NOAA Storm Events Database

noah — 0.1.0

Create Unique Pseudonymous Animal Names

NobBS — 1.0.0

Nowcasting by Bayesian Smoothing

noctua — 2.6.2

Connect to 'AWS Athena' using R 'AWS SDK' 'paws' ('DBI' Interface)

nodbi — 0.11.0

'NoSQL' Database Connector

node2vec — 0.1.0

Algorithmic Framework for Representational Learning on Graphs

nodeSub — 1.2.8

Simulate DNA Alignments Using Node Substitutions

nodiv — 1.4.2

Compares the Distribution of Sister Clades Through a Phylogeny

noegletalR — 0.2.1

Tidy Tibbles of Noegletal

nofrills — 0.3.2

Low-Cost Anonymous Functions

noia — 0.97.3

Implementation of the Natural and Orthogonal InterAction (NOIA) Model

noise — 1.0.2

Estimation of Intrinsic and Extrinsic Noise from Single-Cell Data

noisemodel — 1.0.2

Noise Models for Classification Datasets

noisyCE2 — 1.1.0

Cross-Entropy Optimisation of Noisy Functions

noisyr — 1.0.0

Noise Quantification in High Throughput Sequencing Output

noisySBM — 0.1.4

Noisy Stochastic Block Mode: Graph Inference by Multiple Testing

noisysbmGGM — 0.1.2.3

Noisy Stochastic Block Model for GGM Inference

nolock — 1.1.0

Append 'WITH (NOLOCK)' to 'SQL' Queries, Get Packages in Active Script

nombre — 0.4.1

Number Names

nomclust — 2.8.0

Hierarchical Cluster Analysis of Nominal Data

nominatimlite — 0.4.1

Interface with 'Nominatim' API Service

nomisr — 0.4.7

Access 'Nomis' UK Labour Market Data

nomnoml — 0.3.0

Sassy 'UML' Diagrams

nomogramEx — 3.0

Extract Equations from a Nomogram

nomogramFormula — 1.2.0.0

Calculate Total Points and Probabilities for Nomogram

NonCompart — 0.7.0

Noncompartmental Analysis for Pharmacokinetic Data

noncompliance — 0.2.2

Causal Inference in the Presence of Treatment Noncompliance Under the Binary Instrumental Variable Model

noncomplyR — 1.0

Bayesian Analysis of Randomized Experiments with Non-Compliance

nonet — 0.4.0

Weighted Average Ensemble without Training Labels

nonLinearDotPlot — 0.5.0

Non Linear Dot Plots

nonlinearICP — 0.1.2.1

Invariant Causal Prediction for Nonlinear Models

NonlinearTSA — 0.5.0

Nonlinear Time Series Analysis

nonlinearTseries — 0.3.1

Nonlinear Time Series Analysis

nonmem2R — 0.2.5

Loading NONMEM Output Files with Functions for Visual Predictive Checks (VPC) and Goodness of Fit (GOF) Plots

nonmem2rx — 0.1.5

'nonmem2rx' Converts 'NONMEM' Models to 'rxode2'

nonmemica — 1.0.11

Create and Evaluate NONMEM Models in a Project Context

nonneg.cg — 0.1.6-1

Non-Negative Conjugate-Gradient Minimizer

nonnest2 — 0.5-8

Tests of Non-Nested Models

NonNorMvtDist — 1.0.2

Multivariate Lomax (Pareto Type II) and Its Related Distributions

nonpar — 1.0.2

A Collection of Nonparametric Hypothesis Tests

nonparaeff — 0.5-13

Nonparametric Methods for Measuring Efficiency and Productivity

nonparametric.bayes — 0.0.1

Project Code - Nonparametric Bayes

Nonpareil — 3.5.3

Metagenome Coverage Estimation and Projections for 'Nonpareil'

NonParRolCor — 0.8.0

a Non-Parametric Statistical Significance Test for Rolling Window Correlation

NonProbEst — 0.2.4

Estimation in Nonprobability Sampling

nonprobsvy — 0.1.1

Inference Based on Non-Probability Samples

nonsmooth — 1.0.0

Nonparametric Methods for Smoothing Nonsmooth Data

nopaco — 1.0.9

Non-Parametric Concordance Coefficient

nopp — 1.1.2

Nash Optimal Party Positions

nor1mix — 1.3-3

Normal aka Gaussian 1-d Mixture Models

nord — 1.0.0

Arctic Ice Studio's Nord and Group of Seven Inspired Colour Palettes for 'ggplot2'

nordklimdata1 — 1.2

Dataset for Climate Analysis with Data from the Nordic Region

norm — 1.0-11.1

Analysis of Multivariate Normal Datasets with Missing Values

NORMA — 0.1

Builds General Noise SVRs

normaliseR — 0.1.2

Re-Scale Vectors and Time-Series Features

NormalityAssessment — 0.1.0

A Graphical User Interface for Testing Normality Visually

normalize — 0.1.0

Centering and Scaling of Numeric Data

normalizeH — 1.0.0

Normalize Hadamard Matrix

NormalLaplace — 0.3-1

The Normal Laplace Distribution

normalp — 0.7.2.1

Routines for Exponential Power Distribution

normalr — 1.0.0

Normalisation of Multiple Variables in Large-Scale Datasets

NormData — 1.1

Derivation of Regression-Based Normative Data

NormExpression — 0.1.1

Normalize Gene Expression Data using Evaluated Methods

normfluodbf — 2.0.0

Cleans and Normalizes FLUOstar DBF and DAT Files from 'Liposome' Flux Assays

norMmix — 0.2-0

Direct MLE for Multivariate Normal Mixture Distributions

NormPsy — 1.0.8

Normalisation of Psychometric Tests

nortest — 1.0-4

Tests for Normality

nortestARMA — 1.0.2

Neyman Smooth Tests of Normality for the Errors of ARMA Models

nortsTest — 1.1.2

Assessing Normality of Stationary Process

nos — 2.0.0

Compute Node Overlap and Segregation in Ecological Networks

nosoi — 1.1.2

A Forward Agent-Based Transmission Chain Simulator

NostalgiR — 1.0.2

Advanced Text-Based Plots

not — 1.6

Narrowest-Over-Threshold Change-Point Detection

notebookutils — 1.5.3

Dummy R APIs Used in 'Azure Synapse Analytics' for Local Developments

Next page